
Administrator Manual

Tutorials

Programmer

Pike Tutorial

1

3

4

5

2

Roxen WebServer 2.2

The inside of Internet

Web Site Creator Manual

Table of Contents
Table of Contents

Introduction .5

If tags .7
The basics of if-else statements . 7

The syntax of If tags . 9

If plugins. 11

A basic example of <if> . 14

Combining <if> and <define> . 16

Browser independency with <if supports>. 19

Summary . 22

Database Tutorial. .25
Privileges. 26

Building a Sample Database . 27

The query() function . 27

The big_query() function . 28

Quoting . 30

SQL Syntax. 31

Conditions . 32

Sorting . 32

Limiting . 33

Functions . 33

Features Missing from MySQL . 34

Insertion Syntax . 35

The tablify Container . 35

The Business Graphics Module . 36

The emit and sqlquery Tags . 36

Database Creation . 36

Creating Tables. 37

Indices . 38

Dropping . 39
iii

Table of Contents
iv

4/26/2004
Introduction

Welcome to the Roxen WebServer Tutorials. This section is

dedicated to all users of Roxen WebServer. The tutorials

are intended for both beginners and experienced users, and

we hope that all find some interesting reading and get cre-

ative ideas.

It is assumed that the reader is familiar with HTML and

have some knowledge of XML.

As always, if you have any suggestions, comments or

complaints regarding these tutorials do not hesitate to send

an email to manuals@roxen.com and if the issue is an obvi-

ous bug do not hesitate to report it to Bug Crunch, our bug

tracking system.
5

Introduction 4/26/2004
6

4/26/2004 The basics of if-else statements
If tags

 Welcome to the Lesson about RXML If tags!

As you surely know, a typical web page consists of text

and HTML tags sent over the Internet from a web server to

a browser. The HTML tags tell the browser how the page

should be displayed.

The Roxen Macro Language, RXML, offers a number

of tags which are used in the same way as HTML tags, but

extend the sometimes quite limited power of HTML. One

group of RXML tags are the If tags. These tags make it

possible to create dynamic pages based on conditions. You

could let authenticated users only get confidential informa-

tion of a page or optimize pages for different kinds of

browsers. If tags also make it possible to create web appli-

cations in RXML without using any programming lan-

guage.

Hopefully this brief presentation has made you curious

about the powers of If tags. If so, please don't hesitate to

read the following Sections of this Lesson.

This Lesson is designed so that you may move around

as you please. Feel free to read only the Sections that inter-

est you.

After reading this Lesson you will be able to program

web pages using If tags and you will know some of their

many useful features. As in most creations, a tutorial isn't

enough to become a master. Only hard work will get you

there...

Contents
The basics of if-else statements introduces the logic of if-

else statements in general to beginners in programming. If

you have some experience in programming, skip this Sec-

tion.

The syntax of If tags introduces the syntax of the If tags,

including tags, attributes and operators.

If plugins introduces the If plugins and briefly explains

the usage of each plugin.

A basic example of <if> shows a very basic example of

how to use <if> in a web page to get you started.

Combining <if> and <define> explains how to combine

and use <if> and <define> to dynamically show contents

of a web page.

Browser independency with <if supports> deals with the

<if supports> plugin, used to match contents with the

browser requesting the page. Also discusses the related

page and client scopes.

In the Summary you will find the essence of this Lesson

and references to further sources of knowledge.

Detailed information about If tags is found in the Web
Developer Manual.

The basics of if-else statements

This section will introduce the logic of if-else statements in

general to beginners in programming. If you have some

experience in programming you can skip this section.

After reading this section you will have knowledge of

the basics of if-else statements.

We will create a simple web page with two radiobut-

tons and a regular button that will let you choose to dis-

play the text "Hello World!" in different styles. The

example is rather meaningless in real life but is good to

introduce you to the basics of if-else statements.

The basics
When programming you often want to control the order in

which the statements will be executed. This is done by

using Control Flow Statements, and some of those are the

if-else statements.

The if-else statements enable your program to selec-

tively execute other statements, based on some criteria. The

simplest version, the if statement, is shown below. The

block governed by if (delimited with '{' and '}') is executed

if the expression is true, otherwise the execution continues

after the last '}'.

if (expressions)
{

statement(s)
}

If you want to execute other statements when the expres-

sion is false, you use the else statement.

if (expression)
{

statement(s) executed if expression is true
}
else
{

statement(s) executed if expression is false
}

Another statement, elseif, executes statements if an earlier

if expression was false and it's own expression is true; elseif
is used to form chains of conditions. If expression 1 is true,

the if block executes and then the program jumps to the

last '}' of the else block. Expression 2 will never be evalu-

ated. If, however, expression 1 is false, expression 2 will be

evaluated and the elseif-else will work as a regular if-else as

shown above.

if (expr 1)
{

statement(s) executed if expr 1 is true
}
elseif (expr 2)
{

statement(s) executed if expr 1 is false and expr
2 is true
}
else
{

7

If tags 4/26/2004
statement(s) executed if expr 1 is false and expr
2 is false
}

A basic example
Let's do something real to examplify what have been men-

tioned so far. We will create a simple HTML page contain-

ing RXML (Roxen Macro Language) that will be rather

meaningless except for demonstrating the basics of if and

else. The file will show the text "Hello World!" either in

plain text or bold text, depending on which radiobutton is

checked by the user. Here is the code followed by screen-

shots of the output in a browser:

<html>
<head>
<style type='text/css'>
<!--

body{background-color:#FEFEC9}
h1{background-color:#FEED87}

-->
</style>

</head>

<body>

<!-- HTML FORM -->

<h1>A basic example>/h1>

<p>Check radiobutton and click "OK" for
bold.</p>

<form action='hello_world.html' method='GET'>
<input type='radio' name='style' value='plain' /

>
 Plain style

<input type='radio' name='style' value='bold' />
 Bold style

<input type='submit' value='OK' />
</form>

<p>------------------------</p>

<!-- RXML CODE -->

<if variable='form.style is bold'>
<p>Hello World!</p>

</if>
<else>

<p>Hello World!</p>
</else>

</body>
</html>

The page in the browser before any interaction.

The user chooses 'Bold style', clicks OK...

...and the text goes bold.

The interesting part of the code is the <!-- RXML CODE -->

section. We want to check if the user chose bold or not.
8

4/26/2004 The syntax of If tags
When the user clicks the OK button, the variable style will

contain either the string 'bold' or the string 'plain' (or per-

haps be empty, if something goes wrong). We use an if-else

statement to check which. If style contains 'bold', the

expression variable='form.style is bold' will be true, the

line inside if executes and 'Hello World!' will be bold. If

style doesn't contain 'bold', the expression will be false and

the line inside else will execute; 'Hello World!' will be plain

text.

<!-- RXML CODE -->

<if variable='form.style is bold'>
<p>Hello World!</p>

</if>
<else>

<p>Hello World!</p>
</else>

Let us add the possibility to make the text italic. We insert

the lines:

<input type='radio' name='style' value='italic' />
 Italic style

below the second <input> and rewrites the RXML part to

<if variable='form.style is bold'>
<p>Hello World!</p>

</if>
<elseif variable='form.style is italic'>

<p><i>Hello World!</i></p>
</elseif>
<else>

<p>Hello World!</p>
</else>

 This gives us the following result:

Now the user has three options.

As you might have guessed, this is an example of the if-

elseif-else statement. If style contains 'bold', the if tag exe-

cutes, if it contains 'italic', elseif executes and in all other

cases, else executes.

Summary
This section has taught you the basics of the if-else state-

ments in general. If-else statements is used to control the

flow of a program. The if statement test a condition and if

the condition is true, the if statement block will execute.

The else statement will execute if an if condition is not true.

The elseif statement is used to form chains of conditions.

More details about if-else statements and other control

flow statements are found in any book or on any site that is

teaching programming. However, the information in this

Section should be enough to take you through the rest of

this Lesson.

The next section, The syntax of If tags will introduce

the RXML If tags, including tags, attributes and operators.

The syntax of If tags

This section will introduce the basics of the RXML If tags.

After reading this section you will know the proper

usage of RXML If tags using attributes and operators.

If you are looking for an example, see A basic example
of <if>.

Tags
If-statements in RXML are built up by combining the six

basic tags <if>, <else>, <elseif>, <then>, <true> and

<false>. With <if> and <elseif>, attributes are used to

state which test(s) to do. One attribute should be one of

several If plugins. Logical attributes and, or and not are

used to further specify the test(s). We sum this up in the fol-

lowing general syntax (code within '[]' is optional):

<if plugin1='expr' [and|or plugin2='expr' ...] [not
]>

if block
</if>
[<elseif plugin='expr' ...>

elseif block
</elseif>]
[<else>

else block
</else>]

or

<if plugin1='expr' [and|or plugin2='expr' ...] [not
] />
<then>

if block
</then>
[...]

Always remember to close tags

<if variable='var.foo = 10' />
or

<if variable='var.foo = 10'></if>

and to add values to attributes

<if true=''></if>

<if variable='var.foo = 1' and='' match='&var.bar;
is bar'>

for proper XML syntax. This is necessary since RXML is a

XML compliant language.

 Let's have a look at the basic tags:

<if>

 is used to conditionally show its contents; provides a

framework for the If plugins.

<else>
9

If tags 4/26/2004
 shows its contents if the previous <if> returned false,

or if there was a <false> above.

<elseif>

 is the same as <if>, but will only evaluate if the previ-

ous <if> returned false.

<then>

shows its contents if the previous <if> returned true, or

if there was a <true> above.

<true>

 is an internal tag used to set the return value of If tags

to true.

<false>

 is an internal tag used to set the return value of If tags

to false.

<set variable='var.foo' value='1' />

<if variable='var.foo = 1'>
var.foo is 1

</if>
<else>

var.foo is not 1
</else>

var.foo is 1

A test is made if the variable var.foo is 1. This is true

because the first line does nothing less than sets that vari-

able to 1. Please note that the spaces around the '=' opera-

tor are mandatory.

<set variable='var.foo' value='1' />

<if variable='var.foo = 1' />
<then>

var.foo is 1
</then>
<else>

var.foo is not 1
</else>

var.foo is 1

 The same test using if-then-else instead.

<true />
<then>

truth value is true
</then>
<else>

truth value is false
</else>

truth value is true

In this example the internal <true> is used to set the truth

value to true so that the following <then> will be executed.

Attributes
 The attributes used with <if> are:

plugin name

The If plugin that should be used to test something, e.g.

<if variable>. It is mandatory to specify a plugin. See

the If plugins Section for further information.

not

 Inverts the result (true->false, false->true).

or

 If any criterion is met the result is true.

and

If all criterions are met the result is true. and is default.

<set variable='var.foo' value='1' />

<if variable='var.foo = 1' not=''>
var.foo is not 1

</if>
<else>

var.foo is 1
</else>

var.foo is 1

 Here the test is logically negated with not.
The use of <if variable='var.foo != 1'> gives the

the same result as <if variable='var.foo = 1' not=''>.

A common mistake done is when combining and, or
and not.

<if user='foo' or='' not='' domain='*.foobar.com'>
...

</if>

will not work since the not attribute negates the whole tag,

not just the domain attribute. If you want to negate the

whole condition, add not at the end. If you only want to

negate one of the attributes, you must rewrite the code

with an if-elseif-else statement.

<if user='foo'>
</if>
<elseif domain='*.foobar.com' not=''>

...
</elseif>

<set variable='var.length' value='3' />
<set variable='var.string' value='foo' />

<if variable='var.length > 0' and=''</
b> match='&var.string; = foo'>

var.string is 'foo'
</if>
<else>

Either string is empty, doesn't contain string '
foo' or both.
</else>

var.string is "foo"

A multiple test with two different If plugins, variable and

match.

 You could be tempted to write expressions like:
10

4/26/2004 If plugins
<if variable='var.foo = 1' or='' variable='var.bar
= 1'>

...
</if>

This will not work, as you can only use the same attribute

once. Here Variable is used twice.

Operators
Above we used the '>' operator. The operators that may be

used in expressions are:

Note that '<=' and '>=' are not possible operators except

in the Expr plugin. However, for the effect of <if vari-

able='var.foo <= 1'> you simply use <if vari-

able='var.foo > 1' not=''> instead.

Global patterns are possible to use in almost all plugin

expressions. ' * ' match zero or more arbitrary characters

while ' ? ' matches exactly one arbitrary character.

<if ip='130.236.*'>
Your domain is liu.se

</if>
<else>

Your domain isn't liu.se
</else>

Your domain isn't liu

In this example 130.236.1 as well as 130.236.123 would

be true. If the test would be <if ip='130.236.?'> only

130.236.0 - 9 would be true.

Regular expressions are not supported in If tags.

Summary
This section has taught you the basics of the If tags. If

statements are built up by the six basic tags, <if>, <else>,

<elseif>, <then>, <true> and <false>.

With <if> and <elseif> an attribute naming an If plu-

gin must be added. The general syntax is:

<if plugin1='expr' [and|or plugin2='expr' ...] [not
]>

if block
</if>
[<elseif plugin='expr' ...>

elseif block
</elseif>]
[<else>

else block
</else>]

Logical attributes, and, or and not adds functionality.

Inside the attribute expression, the '=', '==', 'is', '!=', '<'

and '>' operators are valid.

Always remember to close tags (/) and to give

attributes a value (='') for proper XML syntax.

More details about If tags is found in the Web Site Cre-
ator Manual or by putting <help for='if' /> in a web

page.

The next section, If plugins will explain the usage of the

If plugins.

If plugins

This section will introduce the If plugins used as attributes

with <if> and <elseif>.

After reading this section you will have knowledge of

the different plugin categories and the usage of the plugins.

The following sections will contain examples of how to

use different plugins for creating dynamic web pages in

many different ways.

The categories
The If plugins are sorted into four categories according to

their function: Eval, Match, State and Utils.

The following parts will go through these categories and

the corresponding plugins. We will look at the proper way

of usage and some traps you might fall into.

Eval
The Eval category is the one corresponding to the regular

tests made in programming languages, and perhaps the

most used. They evaluate expressions containing variables,

enities, strings etc and are a sort of multi-use plugins. All If-

tag operators and global patterns are allowed (see The syn-
tax of If tags).

Operator Meaning

= equals

== equals

is equals

!= not equals

< less than

> greater than

 EVAL MATCH STATE UTILS

 clientvar accept config date

 cookie client false exists

 expr domain pragma group

 match ip prestate time

 variable language supports user

 . referrer true .

Plugin Syntax

clientvar clientvar='var[is value]'

cookie cookie='name[is value]'

expr expr='pattern'
11

If tags 4/26/2004
Cookie and Variable plugins use a similar syntax. is can be

any valid operator and name is the name of any defined or

undefined variable(cookie). They first check if the named

variable(cookie) exists, and if it does and a pattern(value) is

specified, the expression will be evaluated. Variable is a

general plugin while Cookie is for testing existence and/or

values of cookies.

<set variable='var.foo' value='10' />

<if variable='var.foo = 10'>
true

</if>
<else>

false
</else>

true

Please note that it is the name of the variable, not the

entity representing it, that should be used. Here we receive

an error from the RXML parser becase we used an entity

instead of a variable name. The proper way to do the test

above is <if variable='var.foo = 10'>.

Match is used in a similar way, but there are certain dif-

ferences. The syntax is <if match="pattern">, where pat-

tern could be any expression. We could use <if

match='var.foo = 10'> although this is rather meaning-

less, since we would check if the name of the variable

var.foo (or the string "var.foo") was equal to the string

"10", which it obviously is not. The only thing that would

return true in this case is another meaningless expression:

<if match="var.foo is var.foo">.

Instead we should always use entities with Match, i.e.

var.foo. In RXML, entities are used to represent the con-

tents of something, e.g. a variable. An entity is written as a

variable name enclosed with '&' and ';'. Above the name of

the variable is var.foo, the value is '10' and the entity is

var.foo. The entity is replaced by its content when parsed

to HTML, in this case '10'.

<set variable='var.foo' value='10' />

<if match='var.foo = 10'>
true

</if>
<else>

false
</else>

true

Again, variable name goes with Variable and entity goes

with Match.

A warning when testing patterns with whitespaces. If

you want to test if the entity var.foo equals the string 'he is

nice' and do like this...

<set variable='var.foo' value='he is nice' />
'&var.foo;'

<if match='&var.foo; is he is nice'>
var.foo is 'he is nice'

</if>
<else>

var.foo is not 'he is nice'
</else>

"he is nice"

var.foo is not "he is nice"

...you won't get the expected result. This is because the

Match plugin interprets the first valid operator after a

whitespace as the operator to use. In the example above the

test really is if 'he' equals 'nice is he is nice', which obvi-

ously is false. Rember that the string 'is' also is a valid

operator.

Expr evaluates mathematical and logical expressions.

The following characters only should be used in the expres-

sion:

1, 2, 3, 4, 5, 6, 7, 8, 9, 0, ., x, a, b, c, d, e, f, X, A, B, C, D,

E, F

 For numbers, decimal, octal and hexadecimal. E.g.

1.23, 010 == 8, 0xA1 == 161

int, float

 For type casting between integers and floats. E.g.

(int)3.45 == 3, (float)3 == 3.000000

<, >, =, -, +, *, /, %, (,)

Mathematical operators. Note that '==' should be used

for equality. E.g. 10 % 4 == 2 , (1 + 2) * 3 == 9

&, |

 Logical operators. Note that '&&' and '||' should be

used for 'and' and 'or', that '1' equals 'true' and '0'

equals 'false'. E.g. 1+0 && 1

If any other character is used there will be an error in the

RXML parser. Therefore entities should be used, not the

variable name, in a similar way as Match.

<set variable='var.foo' value='2' />

<if expr='1+&var.foo;*3==7'>
var.foo = 7

</if>
<else>

var.foo = 9
</else>

var.foo = 7

An example of expr showing that the regular rules of

mathematics applies here. The expression evaluates cor-

rectly as

1+2*3 == 1+6 == 7

 and not as

1+2*3 == 3*3 == 9

Note that the '==' operator must be used for 'equals',

unlike the other Eval plugins. Also note that whitespaces

around operators are not mandatory.

match match='pattern1[,pattern

2,...]'

variable variable='name[is pat-

tern]'

Plugin Syntax
12

4/26/2004 If plugins
Clientvar extends the Supports plugin, see State below.

It is used for tests of the client requesting the web page, e.g.

a browser or a WAP phone. The following variables (var)
are currently testable:

• height - The presentation area height in pixels (WAP cli-

ents)

• javascript - The highest version of javascript supported

• robot - The name of the web robot

• width - The presentation area width in pixels (WAP cli-

ents)

is can be any valid operator.

<if supports='javascript'>
<if clientvar='javascript < 1.2'>

Your browser supports older versions of javascr
ipt

</if>
<else>

Your browser supports javascript
</else>

</if>
<else>

Your browser doesn't support javascript at all
</else>

The variable can be used in expressions as shown above.

Clientvar can test the exact JavaScript version supported,

unlike Supports, that only checks if JavaScript is supported

or not.

Match
The Match category contains plugins that match contents

of something, e.g. an IP package header, with arguments

given to the plugin as a string or a list of strings.

Accept checks which content types the browser accepts as

specified by it's Accept-header, e.g. 'image/jpeg' or 'text/

html'.

<p>You are using
<if client='Mozilla*'>

<if client='*compatible*msie*'>
Internet Explorer.

</if>
<elseif client='*compatible*opera*'>

Opera.
</elseif>
<else>

Netscape.
</else>

</if>
<else>

another client.
</else>
</p>

Client compares the user agent string with the given pat-

tern.

Domain and Ip plugins checks if the DNS name or IP

address of the user's computer match any of the patterns

specified. Note that domain names are resolved asynchro-

nously, and that the first time the browser accesses a page

containing <if domain>, the domain name might not have

been resolved yet.

Language matches languages with the Accept-Language

header.

Referrer checks if the Referrer header match any of the

patterns.

State
State plugins check which of the possible conditions some-

thing is in, e.g. if a flag is set or not, if something is sup-

ported or not, if something is defined or not etc.

True and False are plugins used in exactly the same way as

<then> and <else>. Should not be confused with the

<true> and <false> tags.

<set variable='var.foo' value='10' />

<if variable='var.foo is 10' />
<if true=''>

var.foo is 10
</if>
<if false=''>

var.foo is not 10
</if>

var.foo is 10

Config tests if the RXML config named has been set by use

of the <aconf> tag.

<if pragma='no-cache'>
The page has been reloaded!

</if>
<else>

Reload this page!
</else>

Pragma compares the HTTP header pragma with the given

string.

Plugin Syntax

accept accept='type1[,type2,...]'

client client='pattern'

domain domain='pattern1[,patter

n2,...]'

ip ip='pattern1[,pattern2,...]

'

language lan-

guage='language1[,langua

ge2,...]'

referrer refer-

rer='pattern1[,pattern2,...

]'

Plugin Syntax

config config='name'

false false=''

pragma pragma='string'

prestate prestate='option1[,option

2,...]'

supports supports='feature'

true true=''
13

If tags 4/26/2004
Prestate checks if all of the specified prestate options,

e.g. '(debug)', are present in the URL.

Supports tests if the client browser supports certain fea-

tures such as frames, cookies, javascript, ssl among others.

An example of this with a complete list of features that can

be tested is found in the section Browser independency
with <if supports>

Utils
The Utils category contains additional plugins, each spe-

cialized in a certain type of test.

<if time='1200' before='' inclusive=''>
ante meridiem (am)

</if>
<else>

post meridiem (pm)
</else>

Date and Time plugins are quite similar. They check if

today is the date "yyyymmdd" or if the time is "hhmm".

The attributes before, after and inclusive may be added for

wider ranges.

<if exists='/dir1/dir2/foo.html'>
foo.html exists

</if>
<else>

foo.html doesn't exist
</else>

foo.html doesn't exist

Exists checks if a file path exists in a file system. If the

entered path does not begin with '/', it is assumed to be a

URL relative to the directory containing the page with the

<if exists> statement.

Group checks if the current user is a member of the

group according the groupfile.

A useful Util plugin is User, that tests if the user access-

ing a site has been authenticated as one of the users speci-

fied. The argument any can be given for accepting any

authenticated user.

Summary
This Section has presented the If plugins that is divided

into four categories, Eval, Match, State and Utils, Utils and

SiteBuilder, according to their function.

Eval plugins evaluate expressions as in regular program-

ming languages, Match plugins match contents with argu-

ments given and State plugins check which of two possible

conditions is met. Utils plugins perform specific tests such

as present date or time.

More details about If plugins are found in the Web Site
Creator Manual.

The next Section, A basic example of <if>, will show an

example of a basic usage of the Match plugin.

A basic example of <if>

This section will show a simple example of how we use

<if> in a web page.

After reading this section you will understand how to

use <if> with the Match plugin.

We will create a feature on the DemoLabs Inc. site

(shipped with Roxen WebServer). This feature includes the

possiblity to toggle between short view and long view using

a button while reading a protocol in the Management Pro-

tocol Archive. The short view only displays the header of

the protocol, while long view shows the full protocol.

Short/Long feature in protocols
Imagine that the protocols tend to be rather long and that

someone only wants to check which persons were present

and what issuses that were discussed during a meeting.

Wouldn't it be nice only to view a 'header' of the protocol

per default, containing these data. The whole protocol

should only be displayed when the user explicitly requests

that. To accomplish this we add some RXML and a button.

The button will be used to toggle between viewing the

whole protocol and only the 'header'.

Since we want every new protocol file to have this fea-

ture we will edit the Stationary Protocol file protocol.html.
This is a default protocol file that is used as a foundation

for creating new protocol files. At the top of this file we

add the following code:

<!-- Page loaded first time -->
<if match='&form.request; is '>

<form method='POST'>
<input type='hidden' name='request' value='long

' />
<submit-gnutton gnutton='gnutton5' align='left'
>Long view</submit-gnutton>

</form>
</if>

<!-- When long mode is requested -->
<elseif match='&form.request; is long'>

<form method='POST'>
<input type='hidden' name='request' value='shor

t' />
<submit-gnutton gnutton='gnutton5' align='left'
>Short view</submit-gnutton>

</form>
</elseif>

<!-- When short mode is requested -->
<else>

<form method='POST'>
<input type='hidden' name='request' value='long

' />
<submit-gnutton gnutton='gnutton5' align='left'
>Long view</submit-gnutton>

Plugin Syntax

date date='yyyymmdd'

[before,after] [inclusive]

exists exists='path'

group group='name' group-

file='path'

time time='hhmm''

[before,after] [inclusive]

user user='name1[,name2,...]

[any]'
14

4/26/2004 A basic example of <if>
</form>
</else>

Before the line <h1>Opening</h1>, which is the starting

header for the full view mode we add an <if> test. Only if

the user requests long view the content between <if> and

</if> will be sent to the browser. Finally we add </if> at

the last line of the file.

<if match='&form.request; is '>
<h1>Opening</h1>

...
</if>

This will result in the following button and short form of

the protocol file when loaded the first time:

The text displayed in the short form protocol with button
added on top.

The trick is to dynamically insert the right form depending

on which view is requested. This is accomplished with an

if-elseif-else statement. <if> checks for an empty

form.request. This will only be the case the first time the

page is loaded. <elseif> catches the case when long view is

requested and <else> the case when short view is

requested.

<if match='&form.request; is '>
...

</if>
<elseif match='&form.request; is long'>

...
</elseif>

<else>
...

</else>

The inserted form contains a hidden field with its request
variable set to the mode that will be requested on submit

and a special XSLT defined button - <submit-gnutton> -

with its displayed text set inside the container. XSLT is not

in the scope of this Lesson, so we will leave that with tell-

ing this is used only to get a nice look-&-feel.

<form method='POST'>
<input type='hidden' name='request' value='long'

/>
<submit-gnutton gnutton='gnutton5' align='left'
>Long view</submit-gnutton>

</form>

 You could use an ordinary submit button as well:

<input type='submit' value='long' />

Well, there it is! Finally, let's have a look at a part of the

long view version of a protocol page:
15

If tags 4/26/2004
The button inserted on a long view protocol page.

Summary
This section has shown a basic example of how to use the

<if> plugin Match.

More details about <if> and If Plugins are found in the

Web Site Creator Manual and/or by adding <help

for='if' /> in a web page.

The next section, Combining <if> and <define> will

teach the basics of how to use <if> and <define> to

dynamically display contents in a web page.

Combining <if> and <define>

This section will show how to combine <if> and <define>

to dynamically show contents of a web page.

After reading this section you will have knowledge of

how to combine <if> and <define> when creating a web

page. You will also know how to use <define> to define

your own RXML macro.

We will create a web page with a HTML form request-

ing the name and e-mail address of a user. On submit we

will check if all fields are set and if the e-mail address is

valid. The page will show a response depending on the test

results.

The <define> tag
A very useful tag is the Variable tag <define>. It is used for

creating your own macros such as tags, containers or If-

callers. The most common use is to define an 'alias' for a

portion of code that will be inserted several times on a web

page. We will not discuss <define> in depth here. See the

Web Site Creator Manual for details.

Let's create a tag that will work as a sum of some other

tags.

<define tag='multi-set'>
<set variable='var.foo' value='one' />
<set variable='var.bar' value='two' />
<set variable='var.gazonk' value='three' />

</define>

<pre>var.foo is 'var.foo'
var.bar is 'var.bar'
var.gazonk is 'var.gazonk'
</pre>

<multi-set/>

<pre>var.foo is 'var.foo'
var.bar is 'var.bar'
var.gazonk is 'var.gazonk'
</pre>
<pre>var.foo is ""
var.bar is ""
var.gazonk is ""
</pre>

<multi-set/>

<pre>var.foo is "one"
var.bar is "two"
var.gazonk is "three"
</pre>

Here <multi-set> is used to insert the three <set> tags. If

we were to do this set operation in multiple places the

value of <define> is quite obvious. We can also add values

via attributes to our defined tag.

<define tag='hello'>
Hello there, &_.name;!

</define>

<hello name='John Doe'/>
Hello there, John Doe!

The attribute values are catched with entities and using the

'_' scope, representing the current scope. Here the value of

the name attribute is represented by the entity _.name. If
16

4/26/2004 Combining <if> and <define>
we want to set default values to attributes (used when the

attribute is left out) we use the container <attrib>.

<define tag='hello'>
<attrib name='name'>Mr Smith</attrib>
Hello there, _.name!

</define>

<hello />

<hello name='John Doe' />

Hello there, Mr Smith!

Hello there, John Doe!

An interesting feature is to define a macro for an If plugin

or combinations of If plugins. You simply create an alias

that can be used together with <if>.

<define if='js'>
<if supports='javascript' and=''

clientvar='javascript = 1.2' />
</define>

<if js='js' />
<then>

Your browser supports javascript 1.2
</then>
<else>

Your browser doesn't support javascript 1.2
</else>

Your browser supports javascript 1.2

Here <if js='js'> is replaced by <if supports='javas-

cript' and='' clientvar='javascript = 1.2'> before

the page is sent to the browser.

Well, that is how far we go into <define> here. In the

example part below we will use the <define tag> feature

to insert a HTML form with dynamic content.

Verifying an e-mail address
We are going to create a simple e-mail address checker

only using HTML and RXML. The first time the page is

loaded a form is presented to the user for input of name

and e-mail address. A submit sends the input and when the

page is loaded again, we will first check that both name

and e-mail address were added, and if so, check if the e-

mail address matches the form '*@*.*'. If any of the tests

fail, an error message will be displayed together with the

form for new input. Correct input will not be deleted. If all

goes well, a nice welcome awaits the user.

The source code is found by following the link. (It

might be a good idea to open the source code file in a dif-

ferent window, so that it is easily read parallel to this sec-

tion. The code won't be displayed here to shorten the

length of this section.)

First we define a RXML macro called mail-form that

inserts a form. Four attributes are used: nameval, mailval,
status and mess. We use <attrib> to set default values for

nameval and mailval to the data entered in the field. This

will save entered data so that the user won't have to retype

it. The form will display a status message, an ordinary mes-

sage and a form with two input fields and a submit button.

<!-- DEFINING FORM TAG -->
<define tag='mail-form'>

<attrib name='nameval'>&form.name_;</attrib>
<attrib name='mailval'>&form.mail_;</attrib>

<p>&_.status;
&_.mess;</p>

<form method='POST'>
<table>

<tr><td>Name:</td>
<td><input type='input' size='30' name='name_

'
value='&_.nameval;' /></td></tr>

<tr><td>E-mail:</td>
<td><input type='input' size='30' name='mail_

'
value='&_.mailval;' /></td></tr>

<tr><td><input type='submit' name='button'
value='OK' /></td></tr>

</table>
</form>

</define>

The start form

To display the page dynamically we use <if> and <else>.

The first test checks if the page is loaded for the first time

or if the user pushed a submit button to get there. Only if

the user clicked the 'OK' button, form.button will repre-

sent 'OK'. The next test checks if both fields contain data.

If so, var.ok will have the value 1. The last test checks if the

e-mail address match the form '*@*.*'. This test is really

not sufficient in real life, since an address like

'foo@foo@mail.gazonk' would be correct. Remember that

anything goes with '*'. It is left for you to figure out a nice

algorithm for a better check. Remember, practice makes

the master.

<if match='&form.button; = OK'><!-- OK clicked -->
...
<if variable='var.ok = 1'><!-- Both not empty -->
<if variable='var.mail_ = *@*.*'><!-- Success -

->
...

</if>
<else><!-- Mail not on proper format -->

...
</else>

</if>
<else><!-- name or e-mail empty -->
...

</else>
</if>
<else><!-- First time or Again clicked -->

...
17

If tags 4/26/2004
</else>

The first time the page is loaded or if the user clicked the

'Again' button we use our defined macro to display the

start form.

<else><!-- First time or Again clicked -->
<mail-

form status='' mess='Please state your name and
e-mail address.' />

</else>

When we are sure that the user clicked the 'OK' button,

we test the data entered. We use <set> to catch the data

from the two input fields and then test if any of them where

empty, <if variable='var.name_ = '>. If so, we use

<append> to set var.ok to 0, which will give a false result in

the 'Both not emtpy' test. The form will then reappear with

a message telling the user to fill in both fields.

<set variable='var.ok' value='1' />
<set variable='var.name_' value='&form.name_;' />
<set variable='var.mail_' value='&form.mail_;' />

<if variable='var.name_ = '>
<append variable='var.ok' value='0' />

</if>

<if variable='var.mail_ = '>
<append variable='var.ok' value='0' />

</if>

<if variable='var.ok = 1'><!-- Both not empty -->
...

</if>
<else><!-- name or e-mail empty -->

<mail-
form status='Error' mess='You must fill in both nam
e and

e-mail address.' />
</else>

If any field is left empty the form reappears with an error
messge

Next we check the e-mail address. We use the Variable
plugin although it looks like a typical Match test. This is

done to avoid the problem with whitespaces when doing a

Match. (See If plugins section, Eval part for a discussion on

this special case.)

<if variable='var.mail_ = *@*.*'><!-- Success -->
...

</if>
<else><!-- Mail not on proper format -->

<mail-form status='Error' mess='E-
mail not on format *@*.*'

mailval='' />
</else>

If the test fails the form reappears. Note that the e-mail

input filed is cleared by adding mailval='' to <mail-form>.

This will be displayed if E-mail doesn't match the form
'*@*.*'

Finally, if all tests pass, we display a nice welcome message

and add a button that will take the user back to the start

form again.

<if variable='var.mail_ = *@*.*'><!-- Success -->
<p>E-mail address verified</p>
<p>Welcome &form.name_;!</p>
<p>E-mail address '&form.mail_;' is OK.</p>
<form method='POST'>
<input type='submit' name='button' value='Again

' />
</form>

</if>

If all goes well we welcome the user and display the input

Summary
This section has taught you how to combine <if> and

<define> to dynamically show contents of a web page.

The <define> tag is used for creating your own macros

such as tags, containers or If-callers. The code

<define if='js'>
<if supports='javascript' and=''

clientvar='javascript = 1.2' />
18

4/26/2004 Browser independency with <if supports>
</define>

will create the macro 'js' that can be used as an alias for

the <if> tag inside the container. You simply use it like this,

<if js='js'></if>.

More details about <if> and <define> is found in the

Web Site Creator Manual or by adding <help for='if' /

> and/or <help for='define' /> in a web page.

The next section, Browser independency with <if sup-
ports> will teach how to use the <if supports> plugin to

create dynamic pages based on what techniques the client

browser supports.

Browser independency with <if sup-
ports>

This section will deal with the <if supports> plugin and

the page and client scopes.

After reading this section you will know about the

many features that might be checked for with <if sup-

ports> and the properties of the page and client scopes and

their entities.

We will create a feature on the R&D page of Demo-

Labs Inc. site (shipped with CMS Advanced) that dynami-

cally uses JavaScript or HTML forms depending on the

client browsers support for the JavaScript technique.

The <if supports> plugin features
Have you ever met somebody that have produced a good

looking web page for one browser and later found out that

another browser smashes it up totally? With RXML you

can easily check which features the browser requesting a

page supports and send the content corresponding to that.

You simply use the <if supports> plugin. Below follows a

list of the different features this If plugin is able to check.

Attributes

 tests if the HTML attribute is supported inside tags.

Possible features:

align
 backgrounds
 fontcolor
 imagealign
 mailto
 tablecolor
 tableimages

Client type

 checks if the browser is of a certain client type, e.g.

msie checks if the browser is an Internet Explorer. Possi-

ble features:

html
 msie
 phone
 robot
 unkvown

Graphics

 is graphic related tests, i.e. if the browser supports cer-

tain image formats. Possible features:

gifinline
 jpeginline
 pjpeginline
 pnginline
 wbmp0

Tags

 checks if the browser supports these HTML tags at all

and/or in a proper manner. Note that divisions and div
have the same function. Possible features:

bigsmall
 center
 divisions/div
 font
 forms
 frames
 images
 layer
 math
 noscript
 supsub
 tables

Techniques

 tests if the browser supports a certain technique. Possi-

ble features:

activex
 autogunzip
 cookies
 java
 javascript
 js_image_object
 js_inner_html
 pull
 push
 ssl
 stylesheets
 vrml
 wml1.0
 wml1.1

 The syntax for Supports is

<if supports='feature'>

where feature is replaced by one of the keywords above.

The javascript attribute is used to test if the browser sup-

ports JavaScript or not. It will be used in the example part

below.

<if supports='javascript'>
<if clientvar='javascript < 1.2'>
Your browser supports javascript versions less

than 1.2
</if>
<else>
Your browser supports javascript version 1.2 or

higher
</else>

</if>
<else>

Your browser doesn't support javascript at all
</else>

If you want a more exact test for which JavaScript version

is supported, you can use <if clientvar="javascript is

version">, where is can be replaced by any valid operator.

This is not used in the example part below.

Page and client scopes
19

If tags 4/26/2004
For displaying and/or getting information about the client

browser the client scope is suitable. The following list is an

extract of the many different entities available:

• accept-language - The preferred language of the client,

e.g. 'en'.

• accept-languages - The preferred language and a list of

other languages also accepted.

• fullname - The full user agent string, e.g. 'Mozilla/4.7

[en] (X11; I; SunOS 5.7 i86pc)'

• ip - The ip address the client is located at.

• javascript - The javascript version supported by the cli-

ent.

• name - The name of the client, e.g. 'Mozilla/4.7'

• referrer - The URL of the page on which the user fol-

lowed a link to this page.

If information about a page is wanted, there is a conve-

nient scope called page for such tasks. Some useful entities

are:

• bgcolor/fgcolor - the background/foreground color of

the page

• description - as specified in meta data.

• filename

• filesize - in bytes.

• keywords - as specified in meta data.

• title - as specified in meta data.

• type - the content type of the file, e.g. 'text/html'.

• url - the URL to this file from the web server's point of

view.

 For the complete list of entities of these scopes, insert

<insert variables='full' scope='client' />
or

<insert variables='full' scope='page' />

 in a web page. Let's look at some examples:

<if supports='msie'>
You are using Internet Explorer

</if>
<elseif match='&client.name; is Mozilla/4.*'>

You are using Netscape 4.*
</elseif>
<else>

You are using &client.name;
</else>
</before>

 A simple check for which browser is requesting this page.

<if supports='javascript'>
JavaScript version: &client.javascript;

</if>
<else>

Doesn't support JavaScript.
</else>

An example of the use of javascript attribute and entity.

The client.javascript entity contains the actual version sup-

ported. Clientvar plugin can be used for narrow test for

JavaScript version supported. See the If plugins Section,

Eval part, for details and an example.

Browser JavaScript support optimizing
To demonstrate how to use the <if supports> plugin, we

will create the possibilty to contact the R&D team of

DemoLabs Inc. by submitting a message written in a form.

The contact form will be displayed in a pop-up window

and the message will be sent back to the parent window on

submission. This is nicely done by adding some JavaScript

code. However, some browsers don't support JavaScript or

has it turned off. Therefore we will test if the browser sup-

ports our script, and if not, we will bring the user a pure

HTML form instead.

The <if supports='javascript'> works like the

HTML <noscript> tag. There is one major difference,

though; <if supports='javascript'> doesn't catch if the

browser has JavaScript turned off. On the other hand, <if

supports> works on all browsers, also those where

<noscript> doesn't (like Internet Explorer 2.0 and

Netscape Navigator 2.0). We will show how to combine

these in a very useful manner.

The source code of the files in this example is found by

following the link. (It might be a good idea to open the

source code file in a different window, so that it is easily

read parallel to this Section. The code won't be displayed

here to shorten the length of this Section.) Remember that

this is a RXML tutorial. Although we use JavaScript and

XSLT (Extensible StyleSheet Language Transformer) code,

we won't explain that in detail here. If you aren't familiar

with those techniques, don't dig into that code. We will

add enough information for you to understand this Section

anyway.

 Ok, let's get down to work.

This is the JavaScript version of index.xml

The snapshot above shows the JavaScript version of the

edited index.xml of the R&D directory. The 'Contact

R&D' part with a button is added. Let us look how this is

done.

<h1>Contact R&D</h1>
<p initial='initial'>If you have any suggestions,
complaints or other messages to the R&D staff,
please don't hesitate to

<if supports='javascript'>
... <!-- supported -->
20

4/26/2004 Browser independency with <if supports>
<noscript>
... <!-- turned off -->

</noscript>
</if>
<else>

... <!-- not supported -->
</else>

First we add the headline, some text and an if-else state-

ment that will check if JavaScript is supported and on or

not. The supported section will contain the JavaScript ver-

sion code, the turned off will display a message saying that

this page uses JavaScript, please turn this feature on or use

the HTML version. Not supported section will contain the

HTML version code.

The <noscript> version contents added instead

<noscript>
<p>This page uses JavaScript,
so you should enable JavaScript in your browser

options
and reload this page for the button above to wor

k.
Else, click here
to contact R&D staff.</p>

</noscript>

The <noscript> version, sent when we know that the

browser supports JavaScript but has this feature turned off,

gives the user an opportunity to choose version. The link

leads to the contact form in pure HTML. The <else> code,

sent when the browser really doesn't support JavaScript,

looks like this:

For browsers not supporting JavaScript this is added

<else>
contact us.

</else>

We simply insert a link leading to the message form in

HTML version. It is a basic form with no tests of input or

other funny stuff. (We don't comment the form here. Have

a look in the source code if you are curious. The file is

named message.xml.)

The message form in HTML version

Ok, this was (hopefully) the exceptions when users view

the page. Let's consider the JavaScript version again.

<if supports='javascript'>
contact us.
<form>
<input type='button' value='CONTACT R&D'
onClick='openMessWin('messForm.xml')' />

</form>

<form name='hiddenForm' action='disp_mess.xml'>
<input type='hidden' name='_name' />
<input type='hidden' name='mail' />
<input type='hidden' name='mess' />

</form>

<noscript>
...

</noscript>
</if>

We insert a button that opens a new window using

onClick='openMessWin('messForm.xml')'. The contents

of that window is coded in messForm.xml. If you have a

look at the source code you see that some features are

added compared to the HTML version message form -

additional buttons and some JavaScript logic checking the

input. (The hidden form is added for some JavaScript

magic that we won't explain here. The nice look&feel is

possible by the popup.xsl template file, but that is another

story.)
21

If tags 4/26/2004
This is the pop-up window that appears when the user
clicks the 'CONTACT R&D' button

The user adds name, mail address and a message, clicks

'SEND' and the pop-up window disappears and data is

submitted and handled in some way by the server. In this

example we simply display it in the browser. The message

will be displayed the same way if the HTML form is used

instead.

If_tags, Browser support optimizing, img 6

Well, that's it. This was just a simple example of the pow-

ers of <if supports>. As shown in the former parts, there

are many features that may be checked for and dynamically

handled.

Summary

This section has taught you how to check for which facilt-

ies the browser requesting the web page supports and how

to adjust the sent information according to that. The page
and client scopes where also discussed. The syntax for sup-
ports is

<if supports='feature'>

For displaying and/or getting information about the client

browser the client scope is suitable, e.g. the client.javascript
entity holds the JavaScript version supported by the client.

The page scope gets information about a page, such as

page.filename or page.filesize. For the complete list of enti-

ties, insert <insert variables='full' scope='client' />

or <insert variables='full' scope='page' /> in a web

page.

More details about <if supports> and client and page
scopes are found in the Web Developer Manual or adding

<help for="if" /> in a web page.

Summary

This lesson have been treating the Roxen Macro Language

(RXML) If tags, used to create dynamic web pages based

on conditions. They also make it possible to create web

applications in RXML without using any programming

language.

The If tags correspond to the if-else control flow state-

ments common in regular programming languages.

If tags statements are built up by six basic tags, <if>,

<else>, <elseif>, <then>, <true> and <false>. The gen-

eral syntax is:

<if plugin1='expr' [and|or plugin2='expr' ...] [not
]>

if block
</if>
[<elseif plugin='expr' ...>

elseif block
</elseif>]
[<else>

else block
</else>]

Mandatory attribute to <if> and <elseif> is an If plugin.

Logical attributes - and, or and not - adds functionality.

Inside the attribute expression, '=', '==', 'is', '!=', '<' and '>'

operators are valid.

 For proper XML, always close tags

<if match='&var.foo; is foo' />
or

<if match='&var.foo; is foo'></if>

 and give all attributes a value

<if true=''>.

The If plugins are divided into five categories, Eval,
Match, State, Utils and SiteBuilder, according to their func-

tion. Eval plugins evaluate expressions as in regular pro-

gramming languages, Match plugins match contents with

arguments given and State plugins check which of the con-

ditions possible is met. Utils plugins perform specific tests

such as present date or time. SiteBuilder plugins require a

Roxen Platform SiteBuilder and add test capabilities to

web pages contained in a SiteBuilder.
22

4/26/2004 Summary
<set variable='var.foo' value = '1' />

<if variable='var.foo = 1'>
foo = 1

</if>
<else>

foo is something else
</else>

foo = 1

Here is an example of a simple if-else with RXML <if>

and the Eval plugin Variable.

References
Roxen Web Site Creator Manual

Roxen Macro Language (RXML)

Roxen Administrator Manual

HTML 4.01 Specification by W3C

XML 1.0 Specification by W3C

XSL Specification by W3C

XSLT Specification by W3C

Netscape JavaScript Reference

If you have any questions, suggestions, comments or com-

plaints about this lesson, please send an e-mail to manu-

als@roxen.com.
23

If tags 4/26/2004
24

4/26/2004
Database Tutorial

This section of the manual deals with how Roxen Web-

Server and Pike can connect to SQL databases, retrieve

data and modify the data stored there. It doesn't aim at

teaching SQL or how to design a database, save for very

simple cases, which are not surprisingly the most common

in normal Web-related programming tasks. So you won't

find references to triggers, stored procedures, referential

integrity or complex privileges management here: they

CAN be used from Roxen WebServer or Pike, but they're

more of an SQL matter, which is out of the scope of this

manual.

Roxen WebServer and Pike offer an uniform layer to

access all the supported databases. However such a layer

does not cover anything but issuing queries and retrieving

data. SQL is unfortunately another matter: it is an ANSI

standard, but just about every SQL server has its own dia-

lect, which may be a subset or a superset of the standard.

You'll need to check your server of choice's documentation

about its version of SQL.

This section of the manual tries to be a reference for

both Roxen WebServer and Pike programmers. To do so,

most examples will be available in two versions, a Pike

snippet of code, and RXML code.

Note! The RXML <sqloutput> and <sqltable> have been

deprecated in favour of the <emit source="sql">

container. In this manual the 'old' tags are used, but

the new tag is briefly introduced on the The emit and
sqlquery Tags page.

Contents
Introduction to MySQL

 MySQL by TcX AB is a simple SQL server, very popu-

lar among web-designers. It is a relatively simple and

lightweight server, which aims at being very fast, but is

not fully ANSI-SQL compliant, as it doesn't support

features such as triggers or sophisticated access control.

Since MySQL is so popular among web-developers,

it was chosen as the reference RDBMS for Roxen Web-

Server. This chapter will introduce you to it, and to

some of the pitfalls most easily encountered when using

it. The examples shown are however as cross-platform

as they could be: they should work with any SQL server

which claims at least a partial degree of ANSI-SQL

compliance.

• Privileges
• Building a Sample Database

Querying

 Querying a server is by far the most used DB-related

functionality. Almost everything (in some cases, plain

everything) you'll do when interacting with an SQL

server goes through specifying correctly-formed SQL

queries, sending them to a server and then interpreting

the results the server sends back.

 RXML 2 offers two different ways to query a

server, Pike too. These are needed to fit all situations; a

query may yield results, or it might not, and the only

way to tell the difference is by looking at the SQL code

being executed by the server.

 It would seem that programs (or RXML pages)

accessing SQL resources are difficult and cryptic

because the results queries can return are inherently

dynamic in number and structure. Fortunately, very few

programs need to handle the full range of possible out-

comes from a query. In fact, most SQL queries are either

non-interactive, or are parametric. This means they

have a fixed structure where a few values (or no value if

the query is non-interactive) change on each execution.

This ensures that the results (or lack thereof) can be pre-

dicted accurately; if not in number, at least in structure.

 It is best to see SQL statements not as a foreign

plug-in into a program's execution flow, but as an inte-

gral part of it. Whenever the data storage structure

changes, the program must be changed according to it

(this is why database design is such an important mat-

ter: a bad database design decision might end requiring

an application rewrite almost from scratch).

• The query() function
• The big_query() function
• Quoting

Data Extraction

 In this chapter we'll introduce how to perform data-

extraction queries. We'll introduce the SQL syntax for

data-extraction, and provide a few examples, both in

RXML and in Pike.

• SQL Syntax
• Conditions
• Sorting
• Limiting
• Functions
• Features Missing from MySQL

Data Insertion

In this chapter we'll introduce how to insert data into a

database.

Notice that data insertion and modification are two

different operations, using two different SQL com-

mands.

• Insertion Syntax

Using RXML Features with SQL Databases

 In this chapter we'll examine how to exploit some

RXML features when working with SQL databases.

 The examples here contained are geared towards

SQL-driven data sources, but it is not of course the only

use for them.

• The tablify Container
• The Business Graphics Module
• The emit and sqlquery Tags

Database Maintainance

 Up to this point we have assumed the databases to be

already present for us. But this of course isn't the case in

some real-world situations.
25

Database Tutorial 4/26/2004
 Designing a database is a very complex task for

nontrivial cases. It is also a very delicate operation:

when dealing with data-storage-related applications,

usually the application is built around the data, and not

the other way around. So a bad data storage design will

snowball, leading to a bad application design, which is

very expensive to fix, going as far as a rewrite from

scratch.

 So for the umpteenth time we'll remark that if an

application uses non-trivially organized data, the best

solution is to hire someone to design the database.

 In this chapter we'll examine how to build and

delete a database, how to set the tables and indices up

or remove them. We'll assume that the databse structure

is so simple to be self-evident (which is often the case for

web-related systems), database design won't be taken

into account.

Also, the examples will be in pike-only: these activi-

ties are meant to be used only once at database-creation,

and are really not suited for a web-based application.

• Database Creation
• Creating Tables
• Indices
• Dropping

Privileges

A fundamental point, and a very common pitfall, in day-to-

day MySQL operations is understanding how the MySQL

privileges system works. This chapter is meant to provide

only an overview of the basic functionalities. You may

safely skip this section when you only use the internal data-

base shipped with Roxen WebServer, since this hassle is

already covered by the internal workings of Roxen Web-

Server. To get more details on the MySQL privileges sys-

tem, please refer to the MySQL manual.

The first noteworthy aspect is that MySQL does not use

the security features of the host system. It has its own

authentication schemes, different from the system's.

This section uses the GRANT and REVOKE com-

mands, which have been implemented in MySQL version

3.22.11. If you have an earlier version, you're suggested to

upgrade.

MySQL offers four levels of access control: global, data-

base, table and column. We'll only deal with the first two,

as they are the most important. If you think your setup

would require finer-grained security, you'll probably also

need to hire a knowledgeable Database Administrator:

data storage and retrieval is a very sensitive matter, perfor-

mance- and security-wise.

To manage privileges you'll have to use the GRANT and

REVOKE SQL commands. Their (simplified) syntaxes are:

GRANT <priv_type> [, priv_type ...] ON <*.*|databas
e.*> TO

<user name> [IDENTIFIED BY '<password>']
[, <user name> [IDENTIFIED BY '<password>'] ,

...]
[WITH GRANT OPTION]

REVOKE <priv_type> ON <*.*|database.*> FROM <user n
ame>
[, <user name>, ...]

Where priv_type is a type of privilege, chosen among

ALL [PRIVILEGES] FILE RELOAD
ALTER INDEX SELECT
CREATE INSERT SHUTDOWN
DELETE PROCESS UPDATE
DROP USAGE

"ALL" or "ALL PRIVILEGES" means (guess what?) every-

thing. "USAGE" is the same as "no privilege".

If you use the "*.*" syntax, the altered privileges will be

at the global level. If you use "database.*", you'll touch the

database-level privileges.

The user name can have the form 'username@host', and

can have wild-cards ('%' or '_', see later) in both the host

or username parts.

If you specify the "IDENTIFIED BY..." clause, you'll set

a password for the named user. Users without a password

are legal in MySQL, but they are a very serious security

hazard.

WITH GRANT OPTION means that the user is given

the privilege to grant the same privileges he has to other

users. It can be revoked with the syntax
REVOKE GRANT OPTION ON ... FROM *user name*
In the default MySQL setup there is an anonymous user

('%@localhost'), whose existence can cause unexpected

results while authenticating other users. It is advised to

remove the anonymous user. It can't be done with the

GRANT syntax, but you have to do it manually as detailed

the examples below.

Also, in the default MySQL setup there's an empty data-

base named 'test', open for anonymous use. We'll use it

throughout this tutorial, but it's advised to remove it

('DROP DATABASE test') after you're done, as it can be a

source of denial-of-service attacks.

Note! In order to maximize the security of your site, it's

always best to give each user the minimal privileges

allowing him to do his work.

Create a new user named 'kinkie', having basic data access

to the 'test' database.

With Pike:

$ pike
Pike v0.6 release 116 running Hilfe v2.0 (Increment
al Pike Frontend)
object o=Sql.sql("mysql://
root:<password>@localhost/mysql");
o-
>query("grant select,insert,update,delete on test.*
to kinkie identified by

'<password>');
o->query("flush privileges");

Or, from the MySQL monitor:

$ mysql -uroot -p<password> mysql
> grant select,insert,update,delete on test.* to ki
nkie identified by

'<password>';

Create a new user named 'dbmanager' having full SQL

access to all databases (but deny him server-related main-

tainance tasks):

With Pike:

object o=Sql.sql("mysql://
root:<password>@localhost/mysql");
o-
>query("grant select,insert,update,delete,create,dr
op,alter,index on

. to dbmanager identified by '<pa
ssword>'");
26

4/26/2004 Building a Sample Database
Disable the 'nasty' user.

With Pike:

object o=Sql.sql("mysql://
root:<password>@localhost/mysql");
o->query("revoke all on *.* from nasty");

Note! This will _not_ remove the user from the authentica-

tion database, only prevent him from connecting.

To remove the user completely, you'll have to act directly

on the "mysql" database; with Pike:

object o=Sql.sql("mysql://
root:<password>@localhost/mysql");
o->query("delete from user where user='nasty'");

Delete the anonymous users and the public-access entries

to the test databases:

object o=Sql.sql("mysql://
root:<password>@localhost/mysql");
o->query("delete from user where user='');
o->query("delete from db where db like 'test%');

You might have noticed there are no RXML examples in

this chapter. These tasks can be executed from RXML

(provided that you connect with enough access rights), but

it's not advised to have RXML code perform such critical

tasks: one reload too much could make your database use-

less. Using the DBs tab in the server Administration Inter-

face could prove handy, though.

Building a Sample Database

In the previous chapters we introduced how to build and

install your database server. In this chapter we'll build the

sample database that will be used throughout this manual.

Make sure your MySQL daemon is running and that

the MySQL program files are in your PATH, then use this

command line

$ mysqladmin -u root -p password create sample

The database server will create files making a database. A

single database server can handle many databases: each is a

data repository, completely independent from all the other

databases hosted by the same server.

A database can be dumped using the "mysqldump"

utility. It will create an SQL script file, that when run will

re-create the structure and contents of a database. The

sample database was dumped with this utility.

You'll now want to fill in the sample database. To do

so, you must use the "mysql" utility, with these command

lines:

$ mysql -u root -
p password sample <sample_db.schema

$ mysql -u root -p password sample <sample_db.data

The "mysql" utility is a so-called "interactive monitor",

an application whose purpose is to execute arbitrary SQL

statements interactively. It is a very powerful and useful

tool, and it's advised to get familiar with it.

The two lines are required because I chose to dump the

database structure (the so-called 'schema') and the data

separately.

The sample database is a simplified excerpt of the CIA

World Factbook. It only covers a few nations, and for each

nation only a small amount of data.

From this moment on, we will not use the administra-

tive user to develop the examples. Instead, we will create a

user named 'user' with password 'password' and use it.

Make sure you remove that user once you are done with

this tutorial.

To create the user, you will need to issue this query

from inside the mysql interactive monitor:

$ mysql -u root -p *password* sample

...which grants all privileges on sample.* to the user identi-

fied by 'password'.

The Sample Database Structure
The sample database consists of four tables. The first one,

named 'ids' is used to tie country names to their 2-letter

unique codes, which are used everywhere else. The one

named 'areas' has the purpose to tie a few world areas to

an unique integer identifier.

Although in theory both those tables could be not nec-

essary (they handle a very simple association, the 2-letter

country code could be very easily substituted with the

country name in every place it appears), they actually serve

two purposes: they make the other tables more compact

and efficient (a 2-letter unique code is simpler to handle

and requires less space than a variable-length name), and

they formalize and restrict the domain of possible choices,

allowing for a cleaner and more robust design.

The 'countries' table contains a few descriptive fields

for each country, possibly in relation with other tables. The

'boundaries' table contains informations about the coun-

tries boundaries. It could be considered relationed to the

'countries' table, but it's more practical to see it as a sepa-

rate entity.

The query() function

The query() method of the Sql.sql object is the "simple"

query interface. It is meant to be used for those queries that

return little or no data.

 It's signature could look frightening:
27

Database Tutorial 4/26/2004
array(mapping(string:string|float|int)) query
(string sql)

 but it isn't that bad, really.

The returned value is an array, one element for every

row, of mappings whose indices are the column names, and

values the column contents.

So in order to access the "foo" column in the fourth

returned row, you'll use
mixed datum = db[4]->foo;
If there are no results, the method will return an empty

array.

Find out the country code for Italy

string country_code_for_italy() {
object db=Sql.sql("mysql://

user:password@localhost/sample");
array result=db-

>query("select code from ids where name='Italy'");
if (sizeof(result)>0) { //

if there is any result
return result[0]->code;

}
return 0; //no code found

}

The reason why this interface is only suited for simple que-

ries is that it will fetch the whole results set and store it

locally. It's not that big a deal for small databases, but

make a small mistake in specifying the query on an HUGE

database, and it will be tens or hundreds of megabytes to

fetch. Talk about bloat... If you're going to retrieve poten-

tially huge data-sets, you'll need the big_query interface

instead. It's a bit more complex to use, but it will allow you

fetch results on demand.

The big_query() function

The big_query() function allows programmers more con-

trol than the simpler query() function on how data is

retrieved from the database server, as it allows fetching the

data rows on demand. This is especially useful when you

wish to do client-side computations on the fly on big

datasets, that would require too much memory to be com-

pletely fetched and then processed.

The function's signature is object(Sql.sql_result)
big_query(string sql)

The returned object is a handle to the results dataset. It

offers methods allowing you to retrieve rows and get infor-

mations on the dataset itself.

int num_rows()

 returns the total number of rows in the result object.

Some drivers (i.e. Sybase) might not provide this func-

tionality, and thus the only way to know how many

rows there are is by explicitly querying the server (see

example below).

int num_fields()

 returns the number of columns for the result object.

This function is usually meant for development pur-

poses only, you shouldn't need it on production systems.

int eof()

 returns true if all rows in the result object have been

fetched.

array(mapping(string:mixed)) fetch_fields()

retrieves descriptions for the columns in the results set.

The mappings in the returned array (one for each col-

umn) have some default fields, but they change in differ-

ent drivers. See the example below to discover what

fields your driver of choice provides. This function is

usually used for development purposes only. You should

rarely need it on production systems. Also, notice that

the returned results will correspond to the server's idea

of the fields, which might be different from the actual

declaration.

void seek(int skip)

 This method allows to skip fetching some rows (the

skip argument must be a nonnegative integer).

int|array(string|int) fetch_row()

The most important function of all, this one allows you

to fetch a row of data. There is one element of the array

for each column, and the columns are ordered as

returned by fetch_fields() and as specified in the SQL

query. If 0 is returned instead, it means that there are no

more rows to retrieve. An integer 0 is returned for

(SQL) NULL values, while all types of stored data are

returned as strings. It's up to the user to do the adequate

type casts where appropriate. Type information can

usually be retrieved with the fetch_fields() function.

Note! There are some restrictions on how data are

retrieved with some drivers. Please check the drivers-

specific section for more detailed information.

Print the name and background for all the countries in

Europe.

object(Sql.sql) db=Sql.sql("mysql://
user:password@localhost/sample");
object(Sql.sql_result) result=db->big_query(

"select ids.name, countries.background "
"from ids,countries,areas "
"where areas.name='Europe' and countries.map

_refs=areas.id and "
"ids.code=countries.country");

array(string) row;
while (row=result->fetch_row())
{

//
row[0] is the country name, row[1] is the backgroun
d info

write("---"+row[0]+"\n");
write(row[1]+"\n");

}

Now let's try writing a simple pikescript handling a multi-

page table without resorting to the LIMIT SQL clause (see

../data_extract/limiting). The main purpose of this example

is showing the usage of num_rows and seek functions, so

despite being a complete example, it's a bit stretched (in

real-world, this is one of the cases where the Roxen Web-

Server caching capabilities come handy). Also, it doesn't

output formally valid HTML, and it doesn't handle excep-

tions. We'll show the 'ids' table contents, with ten entries

per page and links to the other pages.

#define DBHOST "mysql://user:password@localhost/
sample"
#define QUERY "select name, code from ids order by
name"
#define ENTRIES_PER_PAGE 10
#define SEEK_IS_BROKEN

string parse (object id)
28

4/26/2004 The big_query() function
{
string toreturn;
object(Sql.sql) db;
int number_of_entries, number_of_pages, page, j;
object(Sql.sql_result) result;
array(string) row;

page=(int)(id->variables->page);
toreturn="<table border=1>\n";
db=Sql.sql(DBHOST);
//connect
result=db-

>big_query(QUERY); //query
number_of_entries=result-

>num_rows(); //get the number of rows
#ifdef SEEK_IS_BROKEN

//
it looks like mysql's implementation of seek() is b
roken, probably at

//
the mysql level in my version (3.22.29). I'll do a
loop to emulate seek

for (j=0;j<ENTRIES_PER_PAGE*page;j++)
result->fetch_row();

#else
result-

>seek(ENTRIES_PER_PAGE*page); //
skip unneeded results
#endif

for(j=0; j<10; j++) { //
at most 10 results

row=result->fetch_row(); //
fetch the row

if (!row) //
no more data?

break; //exit
toreturn += "<tr><td>"+row[0]+"</

td><td>"+row[1]+"</td></tr>\n";
}

//
now the links section

number_of_pages=number_of_entries/
ENTRIES_PER_PAGE;

if (number_of_entries%ENTRIES_PER_PAGE)
number_of_pages++; //

there might be an incomplete page
toreturn+="<tr><td colspan=2>";
for (j=0;j<number_of_pages;j++)
{

toreturn += "<a href='"+id-
>not_query+"?page="+j+"'>"+(j+1)+" ";

}
toreturn +="</td></tr>";
toreturn +="</table>";
return toreturn;

}

What happens if the num_rows function is not available?

The same results can be obtained via a simple SQL query,

obtained modifying the actual query being executed. It is of

course less efficient because two queries are issued instead

of one. But it's better than nothing.

The query is obtained replacing the list of fields being

fetched with the 'COUNT(*)' SQL function. It has slightly

different semantics for complex queries, but for all the

query types covered in this manual, it works. You might

want to alias it for easier manageability (see ../

data_extract/syntax).

 So the previous example would have been written as:

#define DBHOST "mysql://user:password@localhost/
sample"
#define COUNT_QUERY "select count(*) as num from id
s"
#define QUERY "select name, code from ids order by

name"
#define ENTRIES_PER_PAGE 10
#define SEEK_IS_BROKEN

string parse (object id)
{

string toreturn;
object(Sql.sql) db;
int number_of_entries, number_of_pages, page, j;
object(Sql.sql_result) result;
array(string) row;

page=(int)(id->variables->page);
toreturn="<table border=1>\n";
db=Sql.sql(DBHOST);
//connect
number_of_entries=(int)(db-

>query(COUNT_QUERY)[0]->num); //(1)
result=db-

>big_query(QUERY); //query
#ifdef SEEK_IS_BROKEN

//
it looks like mysql's implementation of seek() is b
roken, probably at

//
the mysql level in my version (3.22.29). I'll do a
loop to emulate seek

for (j=0;j<ENTRIES_PER_PAGE*page;j++)
result->fetch_row();

#else
result-

>seek(ENTRIES_PER_PAGE*page); //
skip unneeded results
#endif

for(j=0; j<10; j++) //
at most 10 results

{
row=result->fetch_row(); //

fetch the row
if (!row) //

no more data?
break; //exit

toreturn += "<tr><td>"+row[0]+"</
td><td>"+row[1]+"</td></tr>\n";

}
//

now the links section
number_of_pages=number_of_entries/

ENTRIES_PER_PAGE;
if (number_of_entries%ENTRIES_PER_PAGE)
number_of_pages++; //

there might be an incomplete page
toreturn+="<tr><td colspan=2>";
for (j=0;j<number_of_pages;j++)
toreturn += "<a href='"+id-

>not_query+"?page="+j+"'>"+(j+1)+" ";
toreturn +="</td></tr>";
toreturn +="</table>";
return toreturn;

}

(1): this line is a quick shortcut using the simpler query (see

query) interface. It is appropriate in this case, because the

results are tiny. We didn't make any checks on the results

either, because their structure is very well-known.

The values returned by fetch_fields depend on the

server you are connecting to, save for a few ones which

should be always there. This is one of the reasons why you

shouldn't need to use this function except during develop-

ment. Let's see an example of it in action:

With Pike:

> object db=Sql.sql("mysql://user:password@local-
29

Database Tutorial 4/26/2004
host/sample");
Result: object
> object res=db-
>big_query("select country, map_refs, flag from cou
ntries");
Result: object
> res->fetch_fields();
Result: ({ /* 3 elements */

([/* 7 elements */
"decimals":0,
"flags":(< /* 2 elements */

"primary_key",
"not_null"

>),
"max_length":2,
"length":2,
"type":"string",
"table":"countries",
"name":"country"

]),
([/* 7 elements */
"decimals":0,
"flags":(< /* 1 elements */

"not_null"
>),

"max_length":1,
"length":4,
"type":"char",
"table":"countries",
"name":"map_refs"

]),
([/* 7 elements */
"decimals":0,
"flags":(< /* 2 elements */

"not_null",
"blob"

>),
"max_length":13127,
"length":65535,
"type":"blob",
"table":"countries",
"name":"flag"

])
})

An array of mappings is returned, one mapping for each

field. The "name" key is always present, as is the "flags"

key. The other fields change depending on the server, and

(as you might see) on the data type.

Quoting

As better explained in the Conditions page, constants

(especially string constants) must be quoted in SQL. How

the quoting must actually be composed will be explained

later, now we'll introduce the facilities Pike and RXML

offer to perform the quoting operation. The operation is

server-transparent (that is, it adapts to the various servers'

quoting schemes.

Pike
The Pike solution is pretty straightforward: quoting is han-

dled via the Sql.sql->quote(string) method. It returns a

string, which is the quoted argument.

It is supposed to be used when assembling a query, and

is strongly encouraged to use it whenever a query is inter-

actively built from some user's input: a malformed input

could break the query by causing an SQL syntax error. It's

useless to say that it could also be used maliciously, to com-

pletely alter the query structure, thus giving access to the

lowlevel database contents.

Let's write a small interactive Pike application which

prints the background for user-entered countries.

#!/usr/local/bin/pike
#define DATABASE "mysql://user:password@localhost/
sample"

//
sample program: find out some country's background
information
int main() {

object readline=Stdio.Readline(); /
/used for interactive input

object db=Sql.sql(DATABASE); /
/connect to the DB

readline->set_prompt("Country (q to quit)> ");
string input;
array(mapping(string:mixed)) result;
while (input=readline->read()) { /

/while !eof
if (input=="q") break; /

/exit on "q"
//query-

building. I like to use sprintf to build parametric
queries, as

//
it shows the query structure in the source (increas
ed readability),

//
as well as allowing easier control over the SQL sta
tement

string query=sprintf("select background from co
untries, ids "

"where countries.country=i
ds.code and "

"name='%s'",
db->quote(input) /

/notice the quoting!
);

result=db->query(query);
if (!sizeof(result)) {

write("No such country in the database\n");
continue;

}
write(result[0]->background+"\n");

}
}

RXML
There are two occasions in which you'll want to do quot-

ing in RXML when performing SQL-related operations:

parametric query building and results quoting (for instance

to populate a selection list). In most cases the RXML

parser tries to do the "sensible" thing, but sometimes that's

just not enough, and you'll need to manually override the

parser's "opinion".

On production systems, any degree of freedom is a risk:

on such systems it is thus recommended to always specify

the encodingq, as it will lessen the probability of errors,

failures or security vulnerabilities.

Parametric Queries
You can use the standard entity-syntax to build parametric

queries: just use entities in your query strings. Make sure to

force the sql-encoding, or you might head into trouble.

The example beneath does the same task as the above

pike application using RXML. It performs both of the

encoding operations: results-encoding to populate a selec-

tion list and variable encoding to perform a parametric

query:
30

4/26/2004 SQLSyntax
<form method="post" action="&page.url;">
Select a country: <select name="country">
<emit source="sql"

query="SELECT name,code FROM ids,countries
WHERE countries.country=ids.code
ORDER BY name">

<option value="&_.code;">&_.name;</option></
sqloutput>
</select>
<input type="submit">
</form>

<if variable='form.country'>
<sqltable host="mysql://user:password@localhost/
sample"

query="SELECT name,background FROM countries,ids
WHERE countries.country=ids.code

AND ids.code='&form.country:sql;'"/>
</if>

SQL Syntax

The most basic SQL syntax for a data-extraction query is:

SELECT what FROM table name[, table name ...]

[WHERE conditions]
what defines what you wish to get from the query. It can

be a column name (more on column names later), a func-

tion to be performed on the retrieve data (more on this in

the functions chapter). The special notation '*' means "all

columns from all the specified tables".

In order to extract everything from a table, with

RXML:

<sqltable border="1"
host="mysql://user:password@localhost/sample"
query="SELECT * FROM boundaries">

 with Pike:

string parse (object id) {
object db=Sql.sql("mysql://user:password@local-

host/sample");
array(mapping) results=db-

>query("select * from boundaries");
string output="<table border=1>";
foreach (results,mapping m) {

output+="<tr><td>"+m->country_1+"<td>"+m-
>country_2+"<td>"+

m->length+"</tr>\n";
}
output+="</table>";
return output;'

}

If we wanted to get the results only for a column in that

table, we would have instead

with RXML:

<sqltable border="1"
host="mysql://user:password@localhost/sample"
query="SELECT length FROM boundaries">

Of course you can select more than one column, simply

having what be a comma-separated list of column names.

With RXML:

<sqltable border="1"
host="mysql://user:password@localhost/sample"
query="SELECT country_1, country_2 FROM boundarie

s">

Using a single table doesn't harness the power of relations.

Those are not "physical" entities, but are built when a

query is executed if multiple tables are specified together

with conditions to explain how the data from the tables

should be collated (or "the tables are joined"). Usually an

equality test is used to specify those conditions, but it's not

a requirement. The result of the join operation is a virtual

table merging those records from every involved table that

satisfy the specified conditions.

Let's print the name of the known countries and the

geographic regions they belong to. The country names are

in the 'ids' table, the regions are in the 'areas' table, the two

are tied via the 'countries' table. The relations we'll use are

two: ids.code must be equal to countries.country, and

countries.map_refs must be equal to areas.id

with RXML

<sqltable border="1"
host="mysql://user:password@localhost/sample"
query="SELECT ids.name AS country, areas.name AS

region
FROM ids, countries, areas
WHERE ids.code=countries.country

AND countries.map_refs=areas.id">

Column Names
A column can be addressed in two ways: "plain" and

"dotted notation". The latter is the more complete form,

and is guaranteed not to be ambiguous. The former is

allowed for brevity's sake by most servers (including

MySQL), but only when no confusion is possible.

Aliases for Columns
It is possible (usually to have a function result with a sim-

pler name) to alias the names of the returned columns, sim-

ply extending the what parameter above with the syntax

column_name AS alias
The values will be then available in the result as "alias"

column, rather than "column_name".

With RXML:

<sqltable border="1"
host="mysql://user:password@localhost/sample"
query="SELECT country_1 AS first_country,

country_2 AS second_country FROM bo
undaries">

See the functions chapter to see how for an example when

using functions.

Aliases for Tables
Table names can be aliased with the "as" syntax, too. This

is especially important in one case, and that is when you

need to cross-reference a table with itself, or if a table is

involved in multiple relations with another. It's illegal in

SQL to have two or more tables with the same name men-

tioned in the tables list of a query.

With our sample database, it's necessary to alias a table

if we want to expand the country codes in the boundaries

table to their names. In order to accomplish that result, we

will need to:

With RXML:

<sqltable border="1"
host="mysql://user:password@localhost/sample"
query="SELECT ids_1.name AS name_1,

ids_2.name AS name_2, length
FROM ids AS ids_1, ids AS ids_2, boundar

ies
31

Database Tutorial 4/26/2004
WHERE ids_1.code=boundaries.country_1
AND ids_2.code=boundaries.country_2">

Here we aliased two times the 'ids' table for clarity's sake,

we could have aliased it only once. Also, we aliased the col-

umn names for the same reason.

No Tables Involved
It is possible to have queries which don't involve any table,

simply by not specifying the "FROM" clause. Such queries

are not very useful, except sometimes to perform server-

assisted translations.

With Pike:

> object db=Sql.sql("mysql://user:password@local-
host/sample");
Result: object;
> db->query("select now() as time")[0]->time;
Result: "2000-02-29 12:12:57"

The conditional part of a query is explained in the follow-

ing chapter.

Conditions

The condition part of the query, as shown in the "syntax"

paragraph is a boolean expression, usually arbitrarily com-

plex (old versions of MiniSQL have heavy limitations the

syntax of this portion). Only rows that satisfy it will

appear in the results set. If none does, the results set will be

empty.

When evaluating the condition, column names are sub-

stituted with the data they contain, and operators are eval-

uated according to a well-specified grammar. Constants

must be quoted according to their type.

Numeric Constants
Integer and floating-point numbers are not quoted. They

can be told apart because floating-point numbers have the

decimal separator (.). Usually the server's parser is quite

lenient though, fixing types when possible according to the

context.

Column Names
These are not quoted. Since they mustn't be ambiguous this

poses a bit of limitations on column names. As a general

rule, legal C variable names are legal column names (unless

they are reserved words of course). SQL is a bit more

lenient than C, so you should get a little more leeway.

String Constants and Quoting
Strings are quoted using the apostrophe symbol ('). If a

string contains the literal apostrophe character, it must be

escaped. Different escaping schemes are specified, the most

usual ones being doubling it (i.e. 'It''s a shame') or

prepending it with a backslash (i.e. 'It\'s a shame').

Let's obtain from our sample database the total area of

Italy.

With RXML:

<emit source="sql" host="mysql://
user:password@localhost/sample"

query="select name, area_tot from ids, countries
where ids.code = countries.country and ids.name

='Italy'>

&_.name;'s total surface is &_.area_tot; sq. km.
</emit>

Other Data Types
Other data types are usually represented as formatted

string, which get interpreted by the server according to the

context.

The LIKE Operator
This operator is used to do glob-like matching. It has the

syntax value LIKE PATTERN where the value is usually a

column, and the pattern a string literal, possibly containing

two magic characters: '_' and '%', which act like glob char-

acters '?' and '*', that is they match any (single) character,

and any arbitrarily long sequence of any character. If what

you're matching against contains the literal '_' or '%' char-

acters, you can escape them prepending the backslash char-

acter '\'.

Let's try to find out the countries neighbouring Italy.

The right way to do so would be looking in the 'bound-

aries' table. But a summary can be found in the coun-

tries.location text, and we'll use that.

With RXML:

<sqltable border=1 host="mysql://
user:password@localhost/sample"

query="select name from ids, countries
where countries.country=ids.code and locat

ion like '%italy%'">

Notice that the "column like '%something%'" syntax

(with leading and tailing globs) is very inefficient, and

should be avoided whenever possible.

MySQL offers the more powerful REGEXP operator,

with the syntax value REGEXP expression where the

value is usually a column name or a function result, and

expression is a string-quoted regular expression.

NULL Column Values
Some columns can be empty, or (in SQL terms) be NULL.

To deal with them when selecting data, you use the 'IS' syn-

tax, which takes the form value IS [NOT] NULL where

value can be obtained from a a column (thus be a column

name) or can be a constant value (of course it would be

rather dumb to evaluate a constant expression, but you can

of course do that if you wish).

Sorting

Data in a result is in undefined order. To have it sorted to

some other order, the ORDER BY clause can be used. It

modifies the basic query syntax:

SELECT <columns> FROM <table> [, <table> ...] WHERE
<condition>

ORDER BY <column name> [DESC] [, <column nam
e> [DESC] ...]

This will sort the returned rows according to the specified

columns, depending on the column type (numerically if the

column type is numeric, syntactically if the column type is

textual, etc.) If the DESC modifier is specified, the rows

will be sorted in reverse (descending) order.
32

4/26/2004 Limiting
Limiting

It is sometimes useful not to retrieve all the rows in a

query.

You can do it using SQL or (in Pike) you can do it by

simply not using some of the results you fetch.

Doing it in SQL has some advantages, for instance it

will reduce the load on your SQL server, your Pike applica-

tion and your internal network. On the other side, the syn-

tax for performing such an operation is not part of the SQL

standard, and so every server adds its own extensions to

perform this operation.

We will introduce the MySQL syntax here. For other

systems, consult your server's of choice SQL reference

manual.

MySQL offers limiting via an extension of the SELECT

syntax, which gets changed like this:

SELECT <columns> FROM <tables> [WHERE <condition>]
[ORDER BY <columns>]

[LIMIT [offset,]howmany>]

offset and howmany are two numbers. When returning

rows, MySQL will skip the first offset, and only return

howmany.
Fetch the 20th to 30th countries with their associated

codes (sorted by country name) with the 'LIMIT' syntax, in

RXML:

<sqltable border=1 host="mysql://
user:password@localhost/sample"

query="select name,code from ids order by name li
mit 20,10">

...or with Pike, using the query() function and result selec-

tion:

object db;
array(mapping(string:mixed)) result;
db=Sql.sql("mysql://user:password@localhost/sam-
ple");
result=db-
>query("select name,code from ids order by name");
if (sizeof(result)>20)

result=result[20..];
else

result=({});
if (sizeof(result)>10)

result=result[..10];
foreach(result,mapping m) {

write(m->name+"\t"+m->code+"\n");
}

The two sizeof()-based conditionals are needed because

when slicing arrays, we need to make sure that valid

indexes are used, and that the required semantics are

respected.

With Pike, using the big_query() function and result

selection:

object(Sql.sql) db;
object(Sql.sql_result) result;
int j;
db=Sql.sql("mysql://user:password@localhost/sam-
ple");
result=db-
>big_query("select name,code from ids order by name
");
for(j=0;j<19 && result->fetch_row();j++)

; //empty body, it's all done in the condition
for(j=0;j<11;j++) {

array row;

if (!(row=result->fetch_row()))
break;

write (row[0]+"\t"+row[1]+"\n"); //
row[0] is the name, row[1] is the code
}

Functions

Whenever a column or a constant can be used in a query

definition, a function can be used instead. Functions per-

form operations on the data, the usual quoting rules apply-

ing to their arguments.

The available function and their names names vary

wildly from server to server, as does their syntax. We'll

introduce here the most important MySQL functions. For

further information, consult your server's documentation.

Arithmetic and math functions

+, -(unary or binary), / (with infix notation), *

ABS(X)

SIGN(X)

MOD(X Y)

modulo, like 'X % Y' in C

FLOOR(X)

CEILING(X)

ROUND(X)

rounding operators

LEAST(X, Y,...)

returns the smallest of its arguments

GREATEST(X, Y,...)

returns the greatest of its arguments

Comparison and logic functions

=

equality

!= or <>

dis-equality

>, >=, <, <=

IS [NOT] NULL

true if the compared value is (not) NULL

expr IN (value, ...)

true if the expression expr appears in the list

NOT or !

OR or ||

AND or &&

logic operators

String comparison and operations

value LIKE pattern
33

Database Tutorial 4/26/2004
see the Conditions page

value REGEXP pattern

performs a regular-expression match

CONCAT(str1, str2,...)

 concatenates the arguments

LENGTH(str)

 returns the length of its argument

LEFT(str,len)

return the leftmost len characters

RIGHT(str,len)

return the rightmost len characters

SUBSTRING(string,start_at,length)

 returns length characters starting from position

start_at

TRIM([LEADING|TRAILING|BOTH] FROM

string)

trims leading, trailing or both spaces from string

LOWER(string)

 returns the string in lower case

UPPER(string)

 returns the string in upper case

PASSWORD(string)

 returns a Mysql password that checks against

string

ENCRYPT(string[,salt])

 same as the Unix crypt(3) function. If supplied,

'salt' should be 2 characters long. Otherwise it

uses a random salt.

Control flow operators

IFNULL(expr1,expr2)

if expr1 is not null, returns it, otherwise it

returns expr2

IF(expr1,expr2,expr3)

if expr1 is true, returns expr2, else expr3

Date-related functions

DAYOFWEEK(date)

 returns the weekday index for date (Sun-

day=1...Saturday=7)

DAYOFMONTH(date)

 returns the day of the month for date (1..31)

DAYOFYEAR(date)

 returns the day of the year for date (1..366)

MONTH(date)

 returns the month for date (1..12)

YEAR(date)

 returns the year from date (1000..9999)

HOUR(time), MINUTE(time), SECOND(time)

 time extraction functions

CURRENT_DATE, CURRENT_TIME,

CURRENT_TIMESTAMP

'magic' variables, that are treated like functions.

They contain the current date, time, and times-

tamp respectively.

Miscellaneous functions

LAST_INSERT_ID()

returns the last value automatically generated by

an 'AUTO_INCREMENT'-type column

Special functions

 These functions are somewhat 'special', in that they

have different semantics when used in conjunction with

the 'GROUP BY' clause (which is not covered in this

manual).

COUNT([DISTINCT] expr)

if 'expr' is a column name, it returns the number

of non-null rows returned for that column. If it's

an asterisk '*', it gives the number of returned

rows. If the DISTINCT keyword is specified,

duplicate values are not counted.

AVG(expr)

Returns the average of the columns matched.

MIN(expr)

Returns the least of the columns matched.

MAX(expr)

Returns the greatest of the columns matched.

SUM(expr)

Returns the sum of the columns matched.

Show the current day of the week:

$ mysql -u user -p password sample
[MySQL Monitor]
> select dayofweek(now()) as day;

Count the number of rows in a table:

> select count(*) from ids;

Count the number of countries whose name begins by

'i':

> select count(*) as number from ids where ids.n
ame like 'I%'

Features Missing from MySQL

 What's missing?

There are a few very powerful features ANSI SQL pro-

vides that we haven't mentioned, and that we won't go into

detail on.

The main excu.. ahem, reason for this is that they're

quite powerful and complex and thus out of scope for this

manual. Furthermore, they're not supported by all SQL

servers. MySQL in particular doesn't support them.

The features we're talking about here are views and

sub-queries. When your SQL server of choice supports

them, Pike and Roxen WebServer can use them.

Also, SQL is designed to support transactions via some

special keywords. However, not all servers implement this

feature. If you need transactions, you also need an experi-

enced database administrator to optimize your SQL and

your application in general, so you won't find any reference

to that here. Sometimes used as a simpler scheme in place

of transactions, table locking is available for instance on
34

4/26/2004 InsertionSyntax
MySQL. Refer to the MySQL manual for further informa-

tion on the topic.

Insertion Syntax

While data extraction queries enforce the relationships

between the tables in a database, data insertion queries do

not. Data is always inserted into a table, never into a rela-

tion.

This fact is reflected in the SQL syntax for an insertion

query. There are of course a few variations:

INSERT INTO table VALUES (value [, value ...])
is the basic version. It only allows to specify all the val-

ues in a table row. The values' order is of course relevant: it

must correspond to the order the columns were defined in

when the table was created.

Sometimes it's preferrable not to specify data for all the

columns: data may be unknown, automatically completed

by the server (unique IDs, timestamps, ...) or the default

value might be acceptable for some columns. This can be

obtained with the alternate syntax:

INSERT INTO table (column [, column ...]) VALUES

(value [, value ...])
A value must be supplied for each column specified in

the columns-list. Unspecified columns will be assigned the

default value or NULL. If no default value is specified and

NULL is declared invalid for a column, an error will be

thrown when trying to insert.

A particular form of subquery can be used to fill in a

table (usually temporary tables). This is the only form of

subquery supported by the MySQL database. The syntax

is:

INSERT INTO table [(column [, column ...])]
SELECT ...

There are a few limitations for the SELECT query,

check your server's of choice manual to know more about

them.

An insert-type query doesn't return any results, so you

should use SQLQUERY in RXML, or not expect any

results if you're using Pike. Also, you have to watch out

and Quoting quote the values you're inserting. Program

errors and possible security breaches are possible of no

proper quoting is used.

Insertion Query with Pike
This program was used to build the sample database, and

as such it's hackishly raw. It takes the contents of a file

named "country-codes.data" in the current directory. That

file has one entry per row, with two tab-separated fields

(country code and country name). Those same data are

dumped into the sample database.

int main () {
object o=Sql.sql("mysql://user:password@local-

host/sample");
array(string) rows=Stdio.read_file("countries-

codes.data")/"\n";
rows-=({""});
foreach (rows,string row) {

array(string)fields=row/"\t";
o-

>query("insert into ids(code,name) values ('"+field
s[0]+"','"+

o->quote(fields[1])+"')");

}
}

Insertion Query with RXML
Performing insertion queries with RXML must be consid-

ered with extreme caution: while it is a great system, it is

undoubtably less flexible than the Pike programming lan-

guage.

This simple RXML page will allow you to insert a new

country - country code entry into the sample database:

<form action="&page.url;" method="post">
Country name: <insert name="name">

Country code: <insert name="code" maxlength=2>

<input type="submit"><input type="cancel">
</form>

<if variable="form.name">
<!-- we're inserting data here -->
<sqlquery host="mysql://user:password@localhost/
sample"

query="INSERT INTO ids (code,name)
VALUES ('&form.code:sql;','&form.name:sql;

')"/>
</if>

Notice that while this sample works, and can be used in a

development/internal environment, it is not suited to be

used in a production environment: events such as a dupli-

cate entry will cause uncaught exceptions, which could

potentially leak information such as the database's pass-

word or the implementation internals.

See <catch> to address these issues.

The tablify Container

This page isn't meant to be a reference for tablify, as it can

be found on the <tablify> page.

The <tablify> container can be used to make (plain or

nice) HTML tables out of formatted text, as well as allow-

ing to perform some operations on the data like sorting.

Of course it is not mandatory to use it to build tables,

but it can save some work, especially to build "nice"

tables. The <sqltable> tag can be used for the same pur-

pose too, but it doesn't have the same flexibility, and it is

being slowly phased out, so support for it might be

dropped in the future.

Build a table with <emit> to print the total area of each

known nation:

<table border="1">
<tr><th>Country</th><th>Total area</th></tr>
<emit source="sql"

host="mysql://user:password@localhost/sample"
query="SELECT name,area_tot FROM ids,countries

WHERE ids.code=countries.country">
<tr><td>&_.name;</td>

<td>&_.area_tot;</td></tr>
</emit>
</table>

Doing the same with tablify:

<tablify nice="yes" interactive-sort="yes" size="3"
titlecolor="white" cellseparator="|">

Country|Total Area
<emit source="sql"

host="mysql://user:password@localhost/sample"
query="SELECT name,area_tot FROM ids,countries
35

Database Tutorial 4/26/2004
WHERE ids.code=countries.country">
&_.name;|&_.area_tot;</emit>
</tablify>

Tablify expects to receive its data in a tabular form, with

newline-separated rows of tab-delimited entries. In this

case I chose to override the default cell separator because

some editors try to translate the tab character to a sequence

of spaces. Should you choose to do the same, make sure

that your delimiter is a character that does not occur in

your dataset.

While I shamelessly used the interactive-sort parameter

to tablify, it is not recommendable to use the tablify sorting

functions in general, but rather using the SQL "order by"

clause for performance reasons.

The Business Graphics Module

The business graphics module (providing the diagram tag)

allows Roxen WebServer to build different kind of dia-

grams on-the-fly. A reference chapter on the module's fea-

tures (ref: the business graphics module chapter) is

available.

We won't duplicate the reference specification, but

instead focus on how to use a sql data-source to feed a dia-

gram generation tag.

 We'll start off with an example:

Show a graphic documenting the total areas for the

known countries:

<diagram type=barchart horgrid name="Areas"
namefont="franklin gothic demi" namesize=25>

<data xnames form=column xnamesvert>
<sqltable ascii host="mysql://
user:password@localhost/sample"

query="select name,area_land,area_tot fr
om ids, countries where

ids.code=countries.country order
by area_tot desc">
</data>
<legend separator=|>Total area|Land area</legend>
</diagram>

In the example, the data are fed by columns rather than by

rows (which is the default for the diagram tag) because

SQL modules are better suited for that kind of layout.

The <sqltable> tag, together with the ascii parameter,

is the most suited system to feed data to a <diagram> tag.

You always need to watch out for possible field separa-

tor misinterpretation problems: the default field separator

(the tab character) and line separator (newline) are not usu-

ally found in SQL-obtained data-sources, especially the

numeric data used to feed the diagram module. But you

must not take this for granted, so make sure to check, and

possibly use a different separator and the <sqloutput> tag

to make sure.

The emit and sqlquery Tags

The <emit> tag is a plugin-based data management system.

Generally speaking, <emit> will iterate through all the

data in a dataset such as the result of a SQL query, process-

ing the contents of the tag for each item in the dataset. The

source of the dataset is specified in the tag's arguments,

along with a few source-dependent parameters. See the
chapter on emit in the creator manual for more details. The

emit tag allows to take full advantage of the Roxen Web-

Server variable scopes.

Applying this to the case of SQL queries, the dataset is

a tabular result, and the items are the result's rows. The

source to be used is named "sql", and it takes as additional

arguments host (the SQL-URL of the host to be contacted)

and query (the SQL query to be executed). Additionally, it

accepts the same parameters as the sqloutput tag.

The example in the tablify chapter can be rendered

with emit as:

<table border=1>
<emit source="sql" host="mysql://
user:password@localhost/sample"

query="select name,area_tot from ids, countries w
here

ids.code=countries.country">
<tr><td>&_.name;</td><td>&_.area_tot;</td></tr>
</emit>
</table>

Remember: _ is the default scope. Should it be unavailable,

or should you want to use it for some other tag, you can

use another scope, like this:

<table border=1>
<emit source="sql" host="mysql://
user:password@localhost/sample"

scope="queryscope"
query="select name,area_tot from ids, countries w

here
ids.code=countries.country">

<tr><td>&queryscope.name;</
td><td>&queryscope.area_tot;</td></tr>
</emit>
</table>

 The sqlquery tag can be rendered with an empty emit tag

<sqlquery host="mysql://user:password@localhost/
sample"

query="insert into foo(bar) values ('gazonk')">

can thus be translated into

<emit source="sql" host="mysql://
user:password@localhost/sample"

query="insert into foo(bar) values ('gazonk')" />

There is no builtin way to emulate the sqltable tag, you'll

have to follow the syntax described for the <tablify> tag

previously.

Database Creation

Database creation is not a part of the SQL standard, and

the details are very much server-specific. The Pike SQL

interface, however, offers two functions as part of the

Sql.sql object that can serve for this purpose.

Create a "foo" database:

void create_new_database(string dbname)
{

mixed error;
object db = Sql.sql("mysql://admin:pass-

word@localhost/");
error = catch {
db->create_db("newdb");
36

4/26/2004 CreatingTables
};
if(error)
{

werror("Error: "+db->error()+"\n");
return;

}
}

Delete the "foo" database:

void delete_database(string dbname)
{

object db = Sql.sql("mysql://admin:pass-
word@localhost/");

db->drop_db("newdb");
}

Of course the catch {} clause in the first example is overkill

here, these operations are really REALLY meant to be used

interactively, and so a stack backtrace can be very descrip-

tive and useful.

Most servers provide an SQL syntax to perform this

operation. In some cases creating a database is so expensive

that an external app is used to perform the operation.

When your server supports it via SQL, using SQL is

advised. This functions are provided mostly for MiniSQL

compatibility (MiniSQL doesn't provide an SQL syntax to

create a database).

Creating Tables

Tables are created via a mostly standard SQL syntax.

When a table is declared, the names and types of its col-

umns are specified, possibly along with constraints, default

values and other options.

Most databases, however, allow changing a table struc-

ture at any time. Be warned that doing so without breaking

any constraint might be not trivial. We won't go into

details on how to modify a table structure here. You can

check your server's SQL reference manual, looking for the

keywords "ALTER TABLE".

Also, we won't go into details on referential integrity

constraints. If you need them, you also need a skilled data-

base administrator, and explaining them here would be out

of scope.

Again, the SQL standard is not well-specified here.

While the basic syntax to create a table is standardized,

column types are not (except a few). Also, some servers

allow defining custom types, further complicating the mat-

ter. Finally, the syntax to define constraints is heavily dia-

lectized, save for the most basic functions. Check your

server's documentation for further informations.

 We'll use the MySQL syntax as reference.

 The basic syntax is:

CREATE TABLE name (declaration[, declaration ...])
The declarations can be columns, keys or indices (see

the indices chapter) in various flavors. Let's take a look at a

column declaration syntax first: it is

column_namecolumn_type [NOT NULL] [DEFAULT

value] [AUTO_INCREMENT] [PRIMARY KEY]
The column name can be pretty much anything, as long

as it doesn't clash with any reserved word. For simplicity's

sake, using short, descriptive names is advised. Dots,

spaces and other non-alphabetical characters are forbid-

den.

If the NOT NULL clause is specified, it poses a con-

straint on the column, namely that it must be specified (or,

in other terms, it can't be NULL). An attempt to insert a

row without specifying this value will result in an SQL

error and a (Pike or RXML) exception.

If the DEFAULT clause is specified, inserting a row

without specifying this column will result in inserting the

default value instead. If it's not specified, NULL will be

inserted instead (possibly clashing with the NOT NULL
condition).

AUTO_INCREMENT is only meaningful for numeric

types, and useful only for integer types. Its behavior is like

a specialized default value: if NULL is specified as data for

the column, then the actual inserted value will be the maxi-

mum present value + 1. This is useful for creating unique

IDs for the rows in the table.

 We'll return on the PRIMARY KEY argument later.

SQL Data Types
All servers should support at least the INTEGER, REAL,

CHAR and VARCHAR types. Unluckily, that's about as

far as it goes, and there is even no wide-accepted agreement

on the semantics of CHAR and VARCHAR.

INTEGER

is what it seems, an (usually 32-bits) integer. It is signed,

unless the keyword UNSIGNED (e.g. INTEGER

UNSIGNED) is used.

CHAR

is a fixed-length character string. Some servers space-

pad it at the end (and use the VARCHAR type for

unpadded strings), others don't. MySQL doesn't pad it.

VARCHAR

is a variable-length string. Usually it differs from CHAR

in terms of how it is stored on disk: while CHAR values

allocate the storage space for the entire field length (and

if it's shorter leave it unused), VARCHAR values are

usually stored as a (length, value) pair and are packed.

This means that they use less space on disk, but are

somewhat slower to access. More importantly, usually

VARCHAR values can't be used in indices or keys.

MySQL Data Types
Of course servers provide many more data types. Here are

some details on MySQL's types:

TINYINT [UNSIGNED], SMALLINT [UNSIGNED],

MEDIUMINT [UNSIGNED], INTEGER [UNSIGNED],

BIGING [UNSIGNED]

 are respectively 8-, 16-, 24-, 32-, 64-bit wide integers

(signed, 2's complement unless the UNSIGNED clause

is specified). Notice that while performing internal

arithmetic all values are transformed into 64-bit signed

integers, so even for BIGINT UNSIGNED (which is the-

oretically 64-bit wide, no more than 63 bits values

should be used.

FLOAT and DOUBLE

are what you can expect them to be (single- and double-

precision floating-point numbers).

NUMERIC

(length,decimal) is an unpacked floating-point number.

It is stored as a string, one char per digit. If DECIMAL

is 0, then the numbers are considered integer, and can't
37

Database Tutorial 4/26/2004
have a decimal part. LENGTH is the size, and must be

in the 0-255 range.

DATE, DATETIME, TIME

are date-related types. The legal range for them is from

'1000-01-01 00:00:00' to '9999-12-31 23:59:59'.

MySQL uses the "yyyy-mm-dd hh:mm:ss" syntax to

display dates, but also understands others. It is however

recommended to stick to the default.

TIMESTAMP

is a somewhat magic column-type. It stores a date and a

time as a 32-bit UNIX datetime value, thus the legal

range is from '1970-01-01 00:00:00' to sometime in

2037. It is magic in that when you perform an INSERT

or UPDATE operation on a row and don't specify the

value for a TIMESTAMP column, MySQL will fill it for

you with the date-time of the operation. Useful for time-

stamping operations (hence the name).

CHAR (length) [BINARY]

is a fixed-length string as described above. Padding

spaces are not added by MySQL. Comparisons are case-

insensitive unless the BINARY keyword is specified.

length must be in the 1-255 range. Values longer than

the specified length are truncated.

VARCHAR (length) [BINARY]

is a variable-length string. Same arguments as the

CHAR type apply.

TINYBLOB, BLOB, MEDIUMBLOB, LONGBLOB

are amorphous storage spaces, long at most (2^8-1),

(2^16-1), (2^24-1) or (2^32-1) bytes.

TINYTEXT, TEXT, MEDIUMTEXT, LONGTEXT

are the same as BLOBS, save that comparisons between

values are case-insensitive.

Indices

Indices are one of the reasons why RDBMSes are fast

when retrieving data: they are built from the data in user-

specified columns when rows are inserted into the database

and are used when data is selected or retrieved, thus avoid-

ing in most cases the necessity to do a full table scan when

performing read operations. Indices cause insertion opera-

tions to be slightly slower, but can make data extraction

operations and joins orders of magnitude faster. Indices can

span multiple columns, and could even include all the col-

umns (although such an index would be of limited use).

Usually DBMS allow to define more than one index per

table (the maximum number might be constrained).

Keys (or unique indices) can be seen as "a stronger kind

of index". A key is an index which is also constrained to be

unique: having two rows with the same key in a table is

forbidden, for any key defined on the table. The interpreta-

tion the various databases give to this concept varies, how-

ever. For some (including MySQL), a key is merely an alias

for "index". For others, indices can be used to enforce con-

straints but have no impact on data organization while

keys do. For further information on your server's concept

of keys, consult its manual.

One key is special, and is named "primary key". The

data is usually put in storage in such a way that read oper-

ations involving only the primary key are even faster than

operation involving keys or indices. It is also usually very

slow to update, and is not allowed to contain NULL val-

ues.

Unique indices are the way provided by SQL to avoid

duplicate rows, defining one that spans all the columns you

wish to maintain unique, maybe even all of them. There

can be multiple constraints, that can be expressed by defin-

ing multiple indices.

The syntax to create an index varies from RDBMS to

RDBMS. However, there are two main syntaxes we'll

explain here. Consult your server's documentation for

details on the syntax it supports.

MySQL Syntax
MySQL has indices and keys definitions inside table cre-

ation clauses. The basic syntax is:

CREATE TABLE name (declaration [, declaration
...])

where a declaration is either a column declaration, a

key declaration or an index declaration. For columns dec-

laration, see the Creating Tables page.

For indices, unique indices and primary key the syntax

is respectively:

PRIMARY KEY (column [,column...])
 UNIQUE INDEX index_name (column [,column...])
 INDEX index_name (column [,column...])

The names for indices (unique or not) must be unique

in a table (no pun intended).

This is the defininion for the "areas" table in the sam-

ple database:

CREATE TABLE areas (
id tinyint NOT NULL auto_increment,
name char(20) NOT NULL,
PRIMARY KEY (id),
UNIQUE INDEX name (name)

)

There are two constraints: the area id must be unique, as

must the area name. Joins are made on the primary key for

efficiency purposes.

Postgres Syntax
With PostgreSQL and other databases indices are seen not

as part of a table definition, but are "external" entities

attached to a table. They are created by a CREATE clause,

whose basic syntax is

CREATE [UNIQUE] INDEX ON table (column [, col-
umn])

Primary keys are defined using the same syntax as

MySQL.

The definition above would have been with PostgreSQL:

CREATE SEQUENCE areas_seq

CREATE TABLE areas (
id tinyint NOT NULL DEFAULT NEXTVAL('areas_seq'),
name char(20) NOT NULL,
PRIMARY KEY (id)

)

CREATE UNIQUE INDEX unique_area ON areas (name)

Notice that recent versions of MySQL (3.22 and later) and

PostgreSQL support both syntax styles.

Single-Column Primary Keys
38

4/26/2004 Dropping
If your table has a primary key spanning over a single col-

umn, you can declare it simply appending the "PRIMARY

KEY" keyword to the column definition:

CREATE TABLE areas (
id tinyint NOT NULL auto_increment PRIMARY K

EY,
...

)

Notice that in most cases the PRIMARY KEY clause

implies the NOT NULL clause.

Dropping

To delete indices, tables or databases, the DROP command

is used in its variations:

To delete an index (where the CREATE INDEX syntax

is used), the syntax is:

DROP INDEX name
 To drop a table the syntax is:

DROP TABLE name
The table, its contents and definition will be deleted

from the database irrevocably.

To drop a database altogether (where supported), you

can use

DROP DATABASE name
The pike SQL-interface provides a specific-purpose

function to drop a database: this is mainly for compatibil-

ity with MiniSQL where the operation of dropping a data-

base is demanded to a specific-purpose API function,

named drop_db.

Using SQL:

object db = Sql.sql("mysql://admin:pass@local-
host");
mixed exception;
exception = catch {

db->query("DROP DATABASE test");
};
if(exception)
{

werror("Error while dropping the database: "+db-
>error()+"\n");

throw(exception);
}

Using the API functions:

object db=Sql.sql("msql://admin:pass@localhost");
mixed exception;
exception=catch {

db->drop_db("test");
};
if(exception)
{

werror("Error while dropping the database: "+db-
>error()+"\n");

throw(exception);
}

Notice that I haven't either tried to fetch results (there's no

result to fetch anyways) and the exception handling has

been very limited, and for diagnostic purposes only: these

operations are really meant to be used only interactively.
39

	1
	3
	4
	5
	2
	Roxen WebServer 2.2
	The inside of Internet

	Table of Contents
	Introduction 5
	If tags 7
	The basics of if-else statements 7
	The syntax of If tags 9
	If plugins 11
	A basic example of <if> 14
	Combining <if> and <define> 16
	Browser independency with <if supports> 19
	Summary 22

	Database Tutorial 25
	Privileges 26
	Building a Sample Database 27
	The query() function 27
	The big_query() function 28
	Quoting 30
	SQL Syntax 31
	Conditions 32
	Sorting 32
	Limiting 33
	Functions 33
	Features Missing from MySQL 34
	Insertion Syntax 35
	The tablify Container 35
	The Business Graphics Module 36
	The emit and sqlquery Tags 36
	Database Creation 36
	Creating Tables 37
	Indices 38
	Dropping 39

	Introduction
	If tags
	The basics of if-else statements
	The syntax of If tags
	If plugins
	A basic example of <if>
	Combining <if> and <define>
	Browser independency with <if supports>
	Summary

	Database Tutorial
	Privileges
	Building a Sample Database
	The query() function
	The big_query() function
	Quoting
	SQL Syntax
	Conditions
	Sorting
	Limiting
	Functions
	Features Missing from MySQL
	Insertion Syntax
	The tablify Container
	The Business Graphics Module
	The emit and sqlquery Tags
	Database Creation
	Creating Tables
	Indices
	Dropping

