
Table of Contents
Table of Contents

Introduction. 3
Terminology . 3
The Inner Workings of Roxen . 3

A Request's Path Through Roxen . 5
Encountered Module Types. 5

Important Concepts . 7
The Memory Cache . 7

Important Classes . 9
RequestID . 9
Configuration. 10
Variable.Variable. 11
Available Variable Types . 13

The Roxen Module API . 15
Introduction to Roxen Modules. 15
The Module Type Calling Sequence . 15
Constants Common to All Modules . 16
Callback Methods Common to All Modules. 16
API Methods Common to All Modules. 17
Module Variables. 17
Tag Modules . 18
Location (Filesystem) Modules . 19
File Extension Modules . 20
Filter Modules . 20
Authentication Modules. 20
Logger Modules. 20
First Modules. 21
Last Modules . 21
Provider Modules. 21
Content Type Modules . 21
Directory Listing Modules. 21

Roxen-specific Pike Modules . 23
Roxen. 23

Pike. 25
Script . 25
Processing Instruction . 25

Java. 27
AbstractLocationModule . 27
ExperimentalModule . 27
FileExtensionModule. 27
Frame . 27
HTTP . 27
LastResortModule . 28
LocationModule. 28
Module. 29
ParserModule. 30
ProviderModule . 30
RoxenClassLoader. 30
RoxenConfiguration . 30
RoxenFileResponse . 31
RoxenLib . 31
RoxenRequest . 31
RoxenResponse . 32
RoxenRXMLResponse . 32
RoxenStringResponse . 32
SecurityModule . 32
i

Table of Contents
SimpleTagCaller . 33
UniqueModule . 33

Perl . 35
Using In-Line Perl Code . 35
Running Perl Scripts . 35
Supported mod_perl API Methods . 35

CGI. 37
What is a CGI Script? . 37
Available Environment Variables . 37
I/O Via the Standard Streams . 38
ii

e

-
g

n
e

e

.
ng

-

t

g

ing
o
e

me

-

e
to

vi-
to
o-
ial,

g
ri-

uff
ng
Introduction

A brief introduction to programming roxen; glossary and con-
cepts.

End of /roxen/2.1/programmer/introduction/index.xml

Terminology

Start of /roxen/2.1/programmer/introduction/terminol-
ogy.xml

Some important terms to grasp to fully understand the manual.
• A component of a virtual server that fills some specific pur-

pose, such as RXML parsing, providing a filesystem or sim-
ilar. A roxen module is a piece of code interfacing to the
roxen module API, extending the server's features. Roxen
modules may be implemented in pike or Java.

• A pike module is, unlike roxen modules, not something
seen by the common roxen user or administrator. A pike
module extends the pike language environment, providing
the programmer alone with some features, abstraction or
similar, such as the SQL and Image modules.

• The virtual filesystem is the entire path namespace of your
server, as seen in the URL's path segment. In a basic roxen
setup with just a common filesystem module mounted at/

(the filesystem root), all files in the virtual filesystem map to
this one filesystem, as is typically the case with other web-
servers where you have a single document root.

Roxen, however, has a slightly different approach to file-
systems, that shares many characteristics with Unix filesys-
tems. Several filesystems may be mounted on top of each
other at different, or indeed the same, mountpoints in the
virtual namespace of the server. If one filesystem is mounted
at / , another at/I/live/ and a third at/I/live/here/ , a
request for the file/I/live/here/happily.html may
deliver a file residing in either filesystem. Which one is
decided first by the longest matching mountpoint, secondly
the filesystem modules' priorities (as set by the administra-
tor) and finally by which filesystem actually has a file to
deliver.

Similarly, even entire other virtual servers may be
mounted somewhere within your server's namespace, effec-
tively blacking it out to your server. This also means that
such a server's virtual filesystem does not map one-to-one to
the path namespace as seen in the URL from the browser's
point of view. What to the browser looks like a request of the
file /my/secret/garden.jpg could quite possibly be the
file /secret/garden.jpg from a virtual server mounted at/

my/ .
Due to the dynamic nature of roxen, a file in the virtual

filesystem need not exist as an actual file on disk (as it would
in a real filesystem), but might be the result of some on-the-
fly file-generation activity in a roxen module of some sort.
Indeed, even the error page received when roxen didn't find a
file, exists in the virtual filesystem (wherever anything else
doesn't).

To find out what actually happens when requesting a
given URL from your server; where the file has its origin,

what modules touch it and so on, the "Resolve path..."
option in the Maintenance menu under the Tasks tab in th
administration interface does wonders.

• The real filesystem refers, unlike the virtual filesystem dis
cussed above, to the filesystems provided by the operatin
system, where actual files reside; typically on a hard disk,
network filesystem or similar. As the name hints, files on
disk might be considered just the slightest bit more real tha
the figments of imagination that may be harvested from th
virtual filesystem.

• The term refers to where location modules are found in th
virtual filesystem. A virtual file's path is considered to be
below a certain mountpoint when the path begins with the
the entire length of the mountpoint; for instance,/demo/4 is
below both mountpoints/ and/demo/ but not below/demo/

module/ or /hello/world/ . A mount point need not neces-
sarily end in a slash, but it is a rather common convention

• Back in the old days, a web server was one website servi
files through one port at one host. Things change, and the
world grows more complex. The widespread trend of
abstracting a concept and tagging it "virtual" applies to vir
tual servers, as much as it does to the virtual filesystem; a
virtual server in roxen is a collection of roxen modules
working together under a common roof.

The criterion of being accessable on a single host:por
combination does not apply in roxen, nor the fact that the
server uses the entire namespace of that domain. By usin
several server URL:s for a virtual server, it can respond to
requests for several domains, on several ports possibly us
several different protocols (eg HTTP, HTTPS and FTP, all t
the same virtual filesystem). Or, just as possible, if given th
sole server URLhttp://my.domain/just/here/ , it will
not see requests for any other part of the namespace of so
other server handlinghttp://my.domain/ than those below
/just/here/ . Equally possible, although not the most com
mon of configurations, is not to mount any port at all.

End of /roxen/2.1/programmer/introduction/terminol-
ogy.xml

The Inner Workings of Roxen

Start of /roxen/2.1/programmer/introduction/
base_concepts.xml

In programming roxen, it is helpful to be aware of how th
larger building blocks fit together, what goes where and so on
have a fair grasp of the general layout of the programming en
ronment. This section will rush through roxen from one end
the other, noting important and/or useful concepts in the pr
cess. Understanding everything along the way isn't essent
but having once heard about them doesn't hurt.

Roxen is a collection of pike scripts and modules. When firin
up the start script, it sets up some essential environment va
ables to keep dynamic libraries and various other external st
happy. After a rapid progression of start script argument parsi
3

and setting up paths, it rotates the logs and launches the first
pikescript; server/base_server/roxenloader.pike . Stan-
dard output and the standard error streams, stderr for short, is
redirected to the debug log, unless you launched the start script
with the --once parameter, in which case you'll see everything
in your shell console. We mention this, since it's very handy
while developing.

Before racing off the topic of the start script, there is at least
one other set of options essential to the developer, namely
defines. Hidden all over roxen to the casual user are some hefty
amounts of #ifdef:ed helpful debug code that would swamp the
logs if always turned on. To set a define, append -Ddefine_name
to the command line, as in -DREQUEST_DEBUG (for some
rather verbose information about most things happening with
each request as it passes through roxen).

Next in turn, the roxenloader bootstraps the server, making
sure some dependencies are met, setting up some constants not
commonly present in pike and installs roxen's own pike master
program,server/etc/roxen_master.pike . This program is
responsible for, among other things, the dumping and reloading
of programs.

Then, the very core of roxen,server/base_server/

roxen.pike gets loaded. For generally speedy loading, roxen
dumps a lot of its components once compiled, to be loaded back
instantaneously next time if started with the same set of defines.
The configuration of all virtual servers are loaded next, their
respective ports get registered and unless the flag--no-

delayed-load was passed to the start script, not much more
happens next until the first request arrives to a server. This
means, of course, this code in a module of yours won't run until
a server using the module is needed.

At this stage, the server process is up and about and will lis-
ten to incoming requests on all registered ports. When a request
to an uninitialized server is received, roxen will initialize that
server, loading and strapping all of its modules. Once done, the
request is sent forth through the common processing sequence.
Your applications will not be affected by the delayed loading,
but nevertheless it is healthy knowing what happens and how.
To the application, whether it be a module, a script, an rxml
page or a servlet, the delayed loading is transparent and does
not interfere with the programming environment.

For the rest of the lifespan of the roxen process, it will go
about its business listening and responding to requests, until ter-
minated with a signal to the process, the start script or by the
restart/shutdown administrator action. When the roxen process
receives a SIGHUP signal, it reloads its configuration files. A
SIGINT/SIGTERM signal takes down the process and makes
the start script spawn off a new one to replace the old one (send-
ing a SIGINT/SIGTERM to the start script shuts down the
server without respawning another one).

End of /roxen/2.1/programmer/introduction/
base_concepts.xml
4

s

n
n

nt

nd
e
t

te
n

it-
r.

er
ter-

es
file

s
g

t,
e
to
A Request's Path Through
Roxen

A chapter devoted to how a request is processed/routed through
the various layers inside roxen, lightly addressing the module
type calling sequence, but mostly intended to give a sound per-
spective of what happens where and a fair grasp of how roxen
works inside. This chapter is explicitly not limited to pike pro-
gramming, in that it also outlines where CGI, java servlets, perl,
php et cetera fits in the overall picture.

End of /roxen/2.1/programmer/request/index.xml

Encountered Module Types

Start of /roxen/2.1/programmer/request/path.xml

This page follows a request's path from browser to server,
through the various layers of roxen, the module types and to the
end of the chain where the resulting document is sent back
again to the browser as the reply to the request. After reading
this, you should have a good grasp on what happens when and
how the various module types fit in the overall picture.

For this example walk-through, we will follow a request from
browser through the server and back; the example applies for all
supported protocols. We'll be abstracting all encountered mod-
ules by type instead of by name, since we're getting at the prin-
ciple rather than the specifics of a specific server configuration.

Calling Sequence

This is a description of the order of calling modules in roxen.
Generally speaking, an incoming request passes through a num-
ber of type levels, which will be described in turn. A failure at a
type level means that none of the modules of that type could
treat the request. The case where there are no modules of a cer-
tain type is a trivial case of failure.

A failure usually means that the request is passed on to the
next level. What happens when a module succeeds in treating
the request depends on the level, and will be described later for
each case in the roxen modules chapter.

1. An incoming request enters roxen through the protocol
module, which handles the lower level communication with the
client.

2. If the protocol module got some form of authentication
information from the client, the authentication module is
invoked. Regardless of the success or failure, the request
moves on to the next layer. The authentication status (fail or
a valid user identity) is stored in the request information
object.

3. The first try modules get the first shot at returning a
response of some sort to the client. From here on, success or
failure means breaking out of or staying with the flow of the
calling sequence; handled requests are sent back to the cli-

ent, unhandled are subject to enter the other module type
further down the chain.

4. The request now enters a location module; which one
depends on the path accessed. In this respect, the locatio
modules work almost like your average file system; a give
path refers to a certain file entry on some storage medium
somewhere. Or, possibly, a directory entry or a non-existe
file. In either of the latter cases, the request moves on.

5. The request was found a directory at some earlier level, a
it is now up to the directory listing module to generate som
form of directory listing or representation of the directory a
hand.

6. If some previous level sent handled a request by sending
forth a file down the chain, it is processed by an appropria
file extension module (if one handling the proper extensio
was available).

7. The content-type module tags the resulting page with a su
able content-type for the file being sent back to the browse
Modules may of course override this, should they know
what they want.

8. All requests then pass through the filter module stage. Filt
modules may process and alter the request at leisure, wa
marking, filtering out information or doing other forms of
post processing.

9. If no module has yet handled the request, the last modul
get a shot at catching and processing the request before a
not found error is sent back to the client.

10. The protocol module which originally set this chain going i
returned the result from previous stages and starts sendin
the result to the client in response to the request.

11. Finally, as the result is being transferred back to the clien
the logger modules get their peek at the request. When th
logger modules are done and the whole response is sent
the browser, the request information object dies and the
request is over.

End of /roxen/2.1/programmer/request/path.xml
5

6

or
e
n-
Important Concepts

A chapter on various concepts that are of some importance
from a programmer's point of view, but that did not fill entire
chapters of their own.

End of /roxen/2.1/programmer/concepts/index.xml

The Memory Cache

Start of /roxen/2.1/programmer/concepts/ramcache.xml

If all pages were static, they would always end up in the cache.
Of course, the world is seldom that simple, and the cache needs
to know a little bit more about just what pages can or can not be
served from a previous rendering to gain some speed, so it does
not cache all too enthusiastically. It is up to you as a program-
mer to help it make the proper decisions.

The cache is keyed with the raw URL (including prestates
and query variables), and onlyGETrequests without Authentica-
tion headers are cached. Since this also includes dynamic pages
with the result of database queries and the like, such pages need
to interact with the cache to make sure they are not overcached.
This is done in pike with the two macrosNOCACHE() and
CACHE(seconds) . In Java, it is done via thecache(seconds) and
noCache() methods of theRoxenRequest class. For the Perl and
CGI modules, all pages are currently never ever cached (both
modules use theNOCACHE() macro internally).

If NOCACHE()has not been called sometime during the pro-
ceedings of a request, the reply is cached in the in-memory
request-cache. Hence if, later on, a request for the same file
with the same query and prestate parameters occurs, the in-
memory entry will be used instead.

CACHE(seconds) limits the cache time to the number of sec-
onds specified (NOCACHE() is actually just an alias for
CACHE(0)). Hence if the same page gets called for within the
number of seconds specified in theCACHE() macro, it will get
sent from the cache. If, on the other hand, more time has passed,
it will be regenerated.

This way, you may have as dynamic or as static pages as you
like, and still always get optimum use of the memory cache to
speed up things. Just remember that it is always up to you to
instruct the cache of the cachability of results produced by your
tags, modules or scripts, since it will assume that they can be
put in the cache unless otherwise noted!

You can, if you want closer manual supervision of what leaves
the cache, you may install a per-page callback with

Roxen.add_cache_callback(RequestID id,
function(RequestID,object:

int) callback)

to add a callback that is called each time the file is to be sent
from the cache. If your callback returns1, the in-memory entry
will be reused, otherwise not. If you alsodestruct() the sec-
ond argument, the entry will be removed from the cache.

Another alternative is

Roxen.add_cache_stat_callback(RequestID id, string
file, int mtime)

This will case the (real) file specified as 'file' to be stat(2)ed f
each request, if it's mtime differs from the supplied mtime, th
entry is deleted from the cache. The 'main' file is always ha
dled in this manner.

End of /roxen/2.1/programmer/concepts/ramcache.xml
7

8

ts

w

e

c-

in

y)
r-

nd
g.

et-

he

-

P
t
ed)
Important Classes

Important classes; their respective use, purpose, contexts etc.
Class name case kept intact in file names, as a pedagogic mea-
sure.

End of /roxen/2.1/programmer/classes/index.xml

RequestID

Start of /roxen/2.1/programmer/classes/RequestID.xml

The request information object contains all request-local infor-
mation and server as the vessel for most forms of intercommu-
nication between modules, scripts, RXML and so on. It gets
passed round to almost all API callbacks worth mentioning. A
RequestID object is born when an incoming request is encoun-
tered, and its life expectancy is short, as it dies again when the
request has passed through all levels of themodule type call-

ing sequence .

Note! There are actually different request information objec
for different protocols. To the programmer they try to
look the same, but some slight differences might sho
up.

These are the member variables and methods of the object:

Protocol port_obj;
The port object this request came from.

int time;
Time of the request, standard unix time (seconds since th
epoch; 1970).

string raw_url;
The nonparsed, nontouched, non-* URL requested by the
client. Hence, this path is unlikenot_query andvirtfile

not relative to the server URL and must be used in conjun
tion with the former to generate absolute paths within the
server. Be aware that this string will contain any URL vari-
ables present in the request as well as the file path.

int do_not_disconnect;
Typically 0, meaning the channel to the client will be dis-
connected upon finishing the request and the RequestID
object destroyed with it.

mapping(string:string) variables;
Form variables submitted by the client browser, as found
theform scope in RXML. Both query (as found in the query
part of the URL) and POST (submitted in the request bod
variables share this scope, with query variables having prio
ity over POST ones. In other words, the query part of the
URL overrides whatever variables are sent in the request
body.

The indices and values of this mapping map to the
names and values of the variable names. All data (names a
values) are decoded from their possible transport encodin

mapping(string:mixed) misc;
This mapping contains miscellaneous non-standardized
information, and is the typical location to store away your
own request-local data for passing between modules et c
era. Be sure to use a key unique to your own application.

mapping(string:string) cookies;
The indices and values map to the names and values of t
cookies sent by the client for the requested page. All data
(names and values) are decoded from their possible trans
port encoding.

mapping(string:string) request_headers;
Indices and values map to the names and values of all HTT
headers sent with the request; all data has been transpor
decoded, and the header names are canonized (lowercas
on top of that. Here is where you look for the "user-agent"
header, the "referer" [sic!] header and similar interesting
data provided by the client.
9

,

li-

ct

-
nd

.

a-
i-

o
g.
mapping(string:mixed) client_var;
The client scope; a mapping of various client-related vari-
ables, indices being the entity names and the values being
their values respectively.

multiset(string) prestate;
A multiset of all prestates harvested from the URL. Prestates
are boolean flags, who are introduced in an extra leading
path segment of the URL path put within parentheses, as in
http://docs.roxen.com/(tables)/, this rendering a prestate
multiset(< "tables" >) .

Prestates are mostly useful for debugging purposes,
since prestates generally lead to multiple URLs for identical
documents resulting in poor usage of browser/proxy caches
and the like. See config.

multiset(string) config;
Much like prestates, the id->config multiset is typically used
for boolean information of state supplied by the client. The
config state, however, is hidden in a client-side cookie
treated specially by roxen, namely theRoxenConfig cookie.

multiset(string) supports;
All flags set by the supports system.

multiset(string) pragma;
All pragmas (lower-cased for canonization) sent with the
request. For real-world applications typically only
pragma["no-cache"] is of any particular interest, this being
sent when the user does a forced reload of the page.

string prot;
The protocol used for the request, e g "FTP", "HTTP/1.0",
"HTTP/1.1". (Se also clientprot.)

string clientprot;
The protocol the client wanted to use in the request. This
may not be the same as prot, if the client wanted to talk a
higher protocol version than the server supports to date.

string method;
The method used by the client in this request, e g "GET",
"POST".

string realfile;
When the the requested resource is an actual file in the real
filesystem, this is its path.

string virtfile;
The mountpoint of the location module that provided the
requested file. Note that this is not accessable from location
modules; you need to keep track of your mountpoint on your
own using defvar() and query(). This mountpoint is relative
to the server URL.

string rest_query;
The scraps and leftovers of the requested URL's query part
after removing all variables (that is, all key=value pairs)
from it.

string raw;
The raw, untouched request in its entirety.

string query;
The entire raw query part (all characters after the first ques-
tion mark, '?') of the requested URL.

string not_query;
The part of the path segment of the requested URL that is
below the virtual server's mountpoint. For a typical server
registering a URL with no ending path component,

not_query will contain all characters from the leading '/' to
but not including, the first question mark ('?') of the URL.

string data;
The raw request body, containing non-decoded post vari-
ables et cetera.

string remoteaddr;
The client's IP address.

string host;
The client's hostname, if resolved.

Stdio.File connection()
Returns the file descriptor used for the connection to the c
ent.

Configuration configuration()
Returns theConfiguration object of the virtual server that
is handling the request.

End of /roxen/2.1/programmer/classes/RequestID.xml

Configuration

Start of /roxen/2.1/programmer/classes/Configuration.xml

The configuration object, reachable from the RequestID obje
via RequestID->configuration() , is roxen's internal repre-
sentation of a virtual server. Within it, you find all loaded mod
ules, methods for them to interconnect to one another a
various data about the server itself.

These are the member variables and methods of the object:

Server Info

int requests;
The number of requests, for debug and statistics info only

int sent;
Bytes data sent.

int hsent;
Bytes headers sent.

int received;
Bytes data received.

mapping(string:RoxenModule) modules;
All enabled modules in this virtual server. The format is
"module":{ "copies":([num:instance, ...]) }

mapping(RoxenModule:string) otomod;
A mapping from the module objects to module names.

int save_one(RoxenModule o)
Save all variables in a given module.

void save(int|void all)
Save this configuration. If all is included, save all configur
tion global variables as well, otherwise only all module var
ables.

int(0..1) is_file(string virt_path, RequestID id)
Is `virt_path' a file in our virtual filesystem?

int|string try_get_file(string s, RequestID id, int|void status,
int|void nocache, int|void not_internal)

Convenience function used in quite a lot of modules. Tries t
read a file into memory, and then returns the resulting strin
10

r
d

t)

he

s

-

u

r
es

a

e

NOTE: A 'file' can be a cgi script, which will be exe-
cuted, resulting in a horrible delay.

Unless the not_internal flag is set, this tries to get an
external or internal file. Here "internal" means a file that
never should be sent directly as a request response. E.g. an
internal redirect to a different file is still considered "exter-
nal" since its contents is sent directly to the client. Internal
requests are recognized by the id->misc->internal_get flag
being non-zero.

string real_file(string file, RequestID id)
Return the _real_ filename of a virtual file, if any.

mapping get_file(RequestID id, int|void no_magic, int|void
internal_get)

Return a result mapping for the id object at hand, mapping
all modules, including the filter modules. This function is
mostly a wrapper for low_get_file().

mapping|int(-1..0) low_get_file(RequestID id, int|void
no_magic)

The function that actually tries to find the data requested. All
modules except last and filter type modules are mapped, in
order, and the first one that returns a suitable response is
used. If `no_magic' is set to one, the internal magic roxen
images and the find_internal() callbacks will be ignored.

The return values 0 (no such file) and -1 (the data is a
directory) are only returned when `no_magic' was set to 1;
otherwise a result mapping is always generated.

Inter-module Communication

array(string) userinfo(string u, RequestID|void id)
Fetches user information from the authentication module by
calling its userinfo() method. Returns zero if no auth module
was present.

array(string) userlist(RequestID|void id)
Fetches the full list of valid usernames from the authentica-
tion module by calling its userlist() method. Returns zero if
no auth module was present.

array(string) user_from_uid(int u, RequestID|void id)
Return the user data for id u from the authentication module.
The id parameter might be left out if FTP. Returns zero if no
auth module was present.

mixed call_provider(string provides, string fun, mixed ...
args)

Maps the function "fun" over all matching provider modules
and returns the first positive response.

array(mixed) map_providers(string provides, string fun,
mixed ... args)

Maps the function "fun" over all matching provider mod-
ules.

array(RoxenModule) get_providers(string provides)
Returns an array with all provider modules that provides
"provides".

RoxenModule get_provider(string provides)
Returns the first provider module that provides "provides".

RoxenModule|string find_module(string name)
Return the module corresponding to the name (eg "rxml-
parse", "rxmlparse#0" or "filesystem#1") or zero, if there
was no such module.

End of /roxen/2.1/programmer/classes/Configuration.xml

Variable.Variable

Start of /roxen/2.1/programmer/classes/Variable.xml

The classes in theVariable module are the abstractions of
module variables, with methods to define, set, read, rende
modification widgets for, change visibility of the variable an
so on. TheVariable.Variable class is the basic variable type
in Roxen. All other variable types inherit (and should inheri
this class.

Of most interest to the roxen module programmer, we have t
basic, high-level API of theVariable classes - how to define a
variable, change its visibility check callback or get callback
when the variable is changed:

void create(mixed default, void|int flags, void|string|object
std_name, void|string|object std_doc)

The constructor, for defining and initializing variables.
Defaultis the default value for the variable,flagsis a bitwise
or of one or more of theVAR_ defines defined inmodule.h :

VAR_INITIAL
Should be configured initially.

VAR_MORE
Only visible when more-mode is on (default on)

VAR_DEVELOPER
Only visible when devel-mode is on (default on)

VAR_EXPERT
Only for experts

Thestd_nameandstd_docare the name and documentation
string for the default locale (always english).

void set_invisibility_check_callback(function(Reques-
tID,Variable:int) cb)

If the function passed as argument returns1, the variable
will not be visible in the configuration interface.

Pass0 to remove the invisibility callback.

function(RequestID,Variable:int)
get_invisibility_check_callback()

Return the current invisibility check callback.

int check_visibility(RequestID id, int more_mode, int
expert_mode, int devel_mode, int initial, int|void
variable_in_cfif)

Return 1 if this variable should be visible in the administra
tion interface. The default implementation checks theflags
field, and the invisibility callback, if any. Seeget_flags() ,
set_flags() and
set_invisibibility_check_callback() .

If variable_in_cfifis true, the variable is in a module that
is added to the configuration interface itself. This allows yo
to hide variables that would break something in the admin
interface, if set to an value that is illegal in that context, fo
instance. It might seem as though you can not add modul
of your own to the admin interface (and for a good reason
too - tampering with the admin interface can easily lead to
malfunctioning admin environment - but if you really know
what you are doing, you can start the server with the defin
YES_I_KNOW_WHAT_I_AM_DOING, and may then tamper to
your heart's delight :-).

void set_flags(int flags)
Set the flags for this variable. Seecreate() for more info.
11

e
oo.
ri-
rt
il-
ble

ic
ll

e

e

o

x

is
int get_flags()
Returns theflags field for this variable. Seecreate() for
more info.

void set_warning(string to)
Set the warning shown in the configuration interface.

void add_warning(string to)
Like set_warning() , but adds to the current warning, if
any.

int set(mixed to)
Sets the variable to a new value.

The return value depends on the result of the set:

true (non-zero)
The set was successful and changed the value of the
variable. More precisely, the return value hints about
how it was changed:

-1
The variable was changed back to its default
value.

1
The variable was changed otherwise.

false (zero)
The set didn't change the value of the variable, for
some reason or other:

0
A plain 0 is returned if the variable was not
changed by the set.

UNDEFINED
The set failed (verify_set() threw a string).
(UNDEFINED is a0 with zero_type set to one,
such as([])[0]). If verify_set() threw an
exception, the exception is thrown, instead of
returning a value.

int low_set(mixed to)
Forced set. No checking is done whatsoever. Returns:

-1
The variable was changed back to its default value.

1
The variable was changed otherwise.

0
The value was unchanged, or the set failed.

mixed query()
Returns the current value for this variable.

int is_defaulted()
Return true if this variable is set to its default value.

string get_warnings()
Returns the warnings currently signalled by the variable, if
any (zero otherwise).

function(Variable:void) get_changed_callback()
Return the callback set withset_changed_callback() .

void set_changed_callback(function(Variable:void) cb)
The function passed as an argument will be called when the
variable value is changed.

Pass0 to remove the callback.

void add_changed_callback(function(Variable:void) cb)
Add a new callback to be called when the variable is
changed. Ifset_changed_callback() is called, callbacks
added with this function are overridden.

mixed default_value()
Returns the default (initial) value for this variable.

When implementing your own variable types, there is a typ
constant and a host of other methods that are of interest t
This is also the recommended way if you are extending a va
able type to provide more error checking, for instance, apa
from when you use some kind of data that is not already ava
able among the default set of variables. Just inherit a suita
base class (Variable.Variable if you are still doing every-
thing from scratch), and redefine whatever you need.

string type
Mostly used for debug (sprintf("%O", variable_obj)
uses it).

string doc()
Return the documentation for this variable (locale depen-
dant).

The default implementation queries the locale object in
roxen to get the documentation.

string name()
Return the name of this variable (locale dependant).

The default implementation queries the locale object in
roxen to get the documentation.

string type_hint()
Return the type hint for this variable. Type hints are gener
documentation for this variable type, and is the same for a
instances of the type.

array(string|mixed) verify_set_from_form(mixed
new_value)

Like verify_set() , but only called when the variables are
set from a form.

array(string|mixed) verify_set(mixed new_value)
Return({ error, new_value }) for the variable, or throw
a string.

If error != 0, it should contain a warning or error mes-
sage. If new_value is modified, it will be used instead of th
supplied value.

If a string is thrown, it will be used as a error message
from set, and the variable will not be changed.

mapping(string:string) get_form_vars(RequestID id)
Return all form variables preficed withpath() .

mixed transform_from_form(string what)
Given a form value, return what should be set. Used by th
defaultset_from_form() implementation.

void set_from_form(RequestID id)
Set this variable from the form variable in id->Variables, if
any are available. The default implementation simply sets
the variable to the string in the form variables.

Other side effects: Might create warnings to be shown t
the user (seeget_warnings()).

Callsverify_set_from_form() andverify_set() .

string path()
A unique identifier for this variable. Should be used to prefi
form variable names.

Unless this variable was created bydefvar() , the path is
set by the configuration interface the first time the variable
12

s.

u

r)
to be shown in a form. This function can thus return 0. If it
does, and you still have to show the form, callset_path()

with a unique string.

void set_path(string to)
Set the path. Not normally called from user-level code.

This function must be called at least once before
render_form() can be called (at least if more than one vari-
able is to be shown on the same page). This is normally done
by the configuration interface.

string render_form(RequestID id, void|mapping
additional_args)

Return a (HTML) form to change this variable. The name of
all <input> or similar variables should be prefixed with the
value returned from thepath() function.

string render_view(RequestID id)
Return a "view only" version of this variable.

End of /roxen/2.1/programmer/classes/Variable.xml

Available Variable Types

Start of /roxen/2.1/programmer/classes/variable_types.xml

The classes in theVariable module are the abstractions of
module variables, with a common set of methods (covered in
greater depth withVariable.Variable) and some data type
dependent add-ons to constrain or otherwise customize the vari-
able.

Variable.Flag
An on/off toggle.

Variable.Int
Integer variable, with optional range checks

void set_range(int minimum, int maximum)
Set the range of the variable, if minimum and maxi-
mum are both 0 (the default), the range check is
removed.

Variable.Float
Float variable, with optional range checks, and adjustable
precision.

void set_range(float minimum, float maximum)
Set the range of the variable, if minimum and maxi-
mum are both 0.0 (the default), the range check is
removed.

void set_precision(int prec)
Set the number of _decimals_ shown to the user. If
prec is 3, and the float is 1, 1.000 will be shown.
Default is 2.

Variable.String
String variable.

constant width = 40;
The width of the input field. Used by overriding
classes.

Variable.Password
Password variable (uses crypt) (extendsVariable.String).

Variable.File
A filename (extendsVariable.String).

string read()
Read the file as a string.

Stat stat()
Stat the file.

Variable.Location
A location in the virtual filesystem (extendsVari-

able.String).

Variable.URL
A URL (extendsVariable.String).

Variable.Directory
A Directory (extendsVariable.String).

Stat stat()
Stat the directory.

array get()
Return a listing of all files in the directory.

Variable.Text
Text (multi-line string) variable (extendsVari-

able.String).

constant cols = 60;
The width of the textarea.

constant rows = 10;
The height of the textarea.

Variable.MultipleChoice
Base class for multiple-choice (one of many) type variable

void set_choice_list(array to)
Set the list of choices.

array get_choice_list()
Get the list of choices. Used by this class as well.
You can overload this function if you want a
dynamic list.

void set_translation_table(mapping to)
Set the lookup table.

mapping get_translation_table()
Get the lookup table. Used by this class as well. Yo
can overload this function if you want a dynamic
table.

static string _name(mixed what)
Get the name used as value for an element gotten
from theget_choice_list() method.

static string _title(mixed what)
Get the title used as description (shown to the use
for an element gotten from theget_choice_list()

method.

Variable.StringChoice
Select one of many strings (extendsVariable.Multi-

pleChoice).

Variable.IntChoice
Select one of many integers (extendsVariable.Multi-

pleChoice).

Variable.FloatChoice
Select one of many floating point (real) numbers (extends
Variable.MultipleChoice).
13

void set_precision(int prec)
Set the number of _decimals_ shown to the user. If
prec is 3, and the float is 1, 1.000 will be shown.
Default is 2.

Variable.FontChoice
Select a font from the list of available fonts (extendsVari-

able.MultipleChoice).

Variable.List
The List baseclass, offering many-of-one-type types.

string transform_to_form(mixed what)
Override this function to do the value->form map-
ping for individual elements in the array.

Variable.DirectoryList
A list of directories (subclass ofVariable.List).

Variable.StringList
A list of strings (subclass ofVariable.List).

Variable.IntList
A list of integers (subclass ofVariable.List).

Variable.FloatList
A list of floating point numbers (subclass ofVari-

able.List). See alsoVariable.Float .

void set_precision(int prec)
Set the number of _decimals_ shown to the user. If
prec is 3, and the float is 1, 1.000 will be shown.
Default is 2.

Variable.URLList
A list of URLs (subclass ofVariable.List).

Variable.PortList
A list of Port URLs (subclass ofVariable.List).

Variable.FileList
A list of filenames (subclass ofVariable.List).

End of /roxen/2.1/programmer/classes/variable_types.xml
14

oll-

e
er-

, in

est
ail-
is
so
so

irst

r

th
rd-

n

t-
.

e
y
ss
fil-

o
-

as

e
lt
The Roxen Module API

 The different types of roxen modules in-depth.

End of /roxen/2.1/programmer/roxen-modules/index.xml

Introduction to Roxen Modules

Start of /roxen/2.1/programmer/roxen-modules/introduc-
tion.xml

Roxen's native programming interface is available through the
roxen module API. Modules can be conceptually categorized by
their type; parser modules (unformally also known as "tag mod-
ules") add custom tags to the RXML parser, location (or filesys-
tem) modules serve entire documents in a portion of the virtual
namespace of the server, logger modules take notes of the traffic
passing through the server and so on. Depending on what task a
module is trying to accomplish, it will be of one or more of the
available module types. The module type establishes the rela-
tionship between roxen and the module, and determines when
and how the module will be called into action.

All modules have access to the entire roxen API, and there is
no difference between a module delivered with roxen and a
module developed by a third party.

Roxen modules are.pike files implementing at least the
methods required by its module types(s), and probably others as
well. All modules must inheritmodule.pike , which besides
implementing stubs for API functions marked as "optional" in
this manual, also adds mnemonic names for various constants,
among others, the types.

The rest of this chapter is devoted to describing the specifics
of the array of module types, their API methods and where they
fit in the big picture.

End of /roxen/2.1/programmer/roxen-modules/introduc-
tion.xml

The Module Type Calling Sequence

Start of /roxen/2.1/programmer/roxen-modules/
calling_sequence.xml

This is an in-depth rehash of the module type calling sequence
description discussed briefly earlier. As already noted, a request
generally sifts down through the various type levels, until some
module handles it or it ends up a file not found error.

A failure usually means that the request is passed on to the
next level. What happens when a module succeeds in treating
the request depends on the level, and will be described in each
case.

1. First off, the request in intercepted on the socket by a proto-
col module. The protocol module (not located inserver/mod-

ules/ as the other modules shipped with roxen; the protocol
modules are found inserver/protocols/ and are spawned off
from the stub classes inserver/roxen.pike) handles the low-
level talking to the client in the protocol at hand, resolves what

virtual server should handle the request, and gets the wheel r
ing. The protocol module object instance is the RequestID
object which will tag along for the rest of the request, bearing
all request-local state.

2. Before leaving the protocol module, sending the request
forth to the various module types, the RAM cache is
checked for an already rendered version of the page. If th
cache had an equivalent entry that didn't need to be regen
ated, it gets sent right away, giving us a nice speed boost
comparison with the time it would take to render it all over
again. What constitutes "an equivalent entry" is covered in
greater detail whereThe Memory Cache is explained. A
cached request then gets promoted to the final (logging)
stage in this list, the rest sift down through the rest of the
module types.

3. Next stop in the chain is the authentication module, when
present. The authentication module has a look on the requ
object, sets some flags and regardless of the success or f
ure, the request moves on. It is noteworthy that this level
only entered when the client sent an authorization header,
authentication modules based on other criteria probably al
double as some other module type(s).

4. The next class of modules that see the request are the F
modules. If a first try module would decide to handle the
request on its own, the request is passed along to the filte
level further down the chain.

5. Still unhandled requests now undergo a check for what pa
was accessed, and is then routed to location modules acco
ingly, until a response is generated or there are no locatio
modules left. After this, a non-handled request move on to
the filter level. A handled request returning a Stdio.File
object is forwarded to the extension module level and a
returned directory indicator is passed on to the directory lis
ing module. All other results are forwarded to the filter level

6. The request was considered a directory, and it is up to th
directory listing module to generate some form of director
listing or representation of the directory at hand. Regardle
of success or failure to do so, the request moves on to the
ter level.

7. Stdio.File objects generated by previous levels are sent t
the file extension modules according to the filename exten
sion of the virtual file. File Extension modules are typically
used to implement interfacing to external processes, such
a CGI engine. Regardless of success, the request will be
passed on to the filter level.

8. The content-type module, although mostly orthogonal to
the request path calling chain, possibly being hailed from
any module, also may be invoked automatically by roxen.
This happens in the event of a Stdio.File object being
returned from the extension module level. The content-typ
module is then invoked to devise a content-type for the resu
based on the name of the virtual file accessed.
15

s

).
o

d

re
en

pt

d-

.

e

e

r

-

in
9. All requests then pass through the filter module stage for
possible processing of the returned data before sending
away the result to the browser. It is worth noticing that the
state of the request at this stage could differ a lot; for
instance a directory listing, an open file descriptor or even
the yet unhandled request (candidate to become a file not
found message). If the request is still not handled after the
filter module stage, it is forwarded to the MODULE_LAST
type stage, otherwise it is forwarded to the protocol module
once more.

10. If the entire module type calling sequence passed so far has
failed to return a response, the last modules will have a final
shot at catching the request before roxen returns a file not
found error. Regardless of result, the request is forwarded
from the MODULE_LAST stage to the protocol module.

11. The protocol module which originally set this chain going is
returned the result from previous stages and starts sending
the result to the client in response to the request.

12. Once the protocol module has initiated the response transfer
to the client, the logger modules get a shot at logging some
information in some way, until one of them decides that the
request shall not see any other log modules or there are no
more loggers left. Since the request has already been sent (or
is just being sent), the logger modules can not alter the
response seen by the client.

End of /roxen/2.1/programmer/roxen-modules/
calling_sequence.xml

Constants Common to All Modules

Start of /roxen/2.1/programmer/roxen-modules/
common_constants.xml

This page covers all constants that all module types may or are
expected to provide with information about the module. (Be
sure to see the sections on commoncallback methodsandAPI
methods too.)

string cvs_version;
This string (filtered to remove some ugly cvs id markup)
shows up in the roxen administration interface when han-
dling module parameters in developer mode (configured
under "User Settings" below the Admin tab). It will also
serve as the basis for extracting version information of the
file in the inherit tree. Optional, but convenient, especially if
you use cvs for version control of your code.

string module_name;
The name that will show up in the module listings when
adding modules or viewing the modules of a virtual server.
Keep it fairly informative and unique, since this is the only
means for identification of your module in the most brief
add module view mode.

int module_type;
Module type (see server/etc/include/module.h). May be bit-
wise ored (|) for hybrid modules. Hybrid modules must
implement the required API functions for all of the module
types they are hybrids of.

string module_doc;
The documentation string that will end up in the administra-
tion interface view of the module just below the module

name. Also shows up in the more verbose add module
views.

int module_unique;
0 to allow multiple instances of the module per virtual
server, 1 to allow at most one.

int thread_safe;
Tell Roxen that this module is thread safe. That is, there i
no request specific data in module global variables (such
state is better put in theRequestID object, preferably in the
id->misc mapping under some key unique to your module

If your module is not thread safe, setting this flag to zer
(0) or leaving it unset altogether will make roxen serialize
accesses to your module. This will hurt performance on a
busy server. A value of one (1) means your module is threa
safe.

End of /roxen/2.1/programmer/roxen-modules/
common_constants.xml

Callback Methods Common to All Mod-
ules

Start of /roxen/2.1/programmer/roxen-modules/
common_callbacks.xml

This page covers all callbacks that all module types may or a
expected to implement in order to function as a proper rox
module. (Be sure to see the sections on commonconstantsand
API methods too.)

void create(Configuration|void conf)
In create() , you typically define your module's config-
urable variables (using thedefvar() method) and set data
about it usingset_module_creator() and
set_module_url() . Theconfiguration object of the virtual
server the module was initialized in is always passed, exce
for the one occasion when the file is compiled for the first
time, when the `conf' argument passed is 0. Se alsostart() .

string info(Configuration|void conf)
Implementing this function in your module is optional.

When present, it returns a string that describes the mo
ule. When absent, Roxen will use elementmodule_doc .
Unlike module_doc, though, this information is only shown
when the module is present in a virtual server, so it won't
show up when adding modules to a server.

void start(int occasion, Configuration conf)
Set up shop / perform some action when saving variables
(optional)

If occasion is 0, we're being called when starting up th
module, to perform whatever actions necessary before we
are able to service requests. This call is received when th
virtual server the module belongs to gets initialized, just
after the module is successfully added by the administrato
or when reloading the module.

This method is also called with occasion set to 2 when
ever the configuration is saved, as in when some module
variable has changed and the administrator clicked "save"
the admin interface. This also happens just before calling
stop() upon reloading the module.

void stop()
Close down shop. (optional)
16

h

r-

f

ti-
ner-

ose
tor
ta

en-
ta

th-

er-

ct

ny
ule

ve
is-
es
le
wn

i-
rver
d-
an
ce
es
n-
d

a-
e-
ne
m-
g
to
Tidy up before the module is terminated. This method is
called when the administrator drops the module, reloads the
module or when the server is being shut down.

string status()
Tells some run-time status, statistics or similar to the curious
administrator. Implementing this function is optional.

Returns a string of HTML that will be put in the admin
interface on the module's settings page just below thedocu-

mentation string .

mapping|int(-1..0)|Stdio.File find_internal(string file,
RequestID id)

Internal magic location any module may use, similar to the
find_file() method of allLocation (Filesystem) Modules,
but with a less civilized-looking URL (typically prefixed
with the string"/internal/" prepended to your module
identifier). This method is mostly used for background
things where a URL doesn't show too much, such as when
generating background images and the like. To get the inter-
nal mountpoint below which find_internal will handle
requests, usequery_internal_location() .

May return
• (a normal response mapping)
• (the integer value-1 .)
• (an Stdio.File object)
• signalled by the integer value0.

End of /roxen/2.1/programmer/roxen-modules/
common_callbacks.xml

API Methods Common to All Modules

Start of /roxen/2.1/programmer/roxen-modules/
common_api.xml

This page covers all API methods available to all (and interest-
ing to all) module types. (Be sure to see the sections on com-
monconstants andcallbacks too.)

int module_dependencies(Configuration conf, array(string)
modids)

Add these modules to the configuration; a handy way of
assuring that modules whose presence your module depends
on are really there.modids is an array of module identifiers
as those used byConfiguration->find_module() . Typical
usage:

mapping(string:function(RequestID:void))
query_action_buttons(RequestID id)

Optional callback for adding action buttons to the module's
administration settings page; convenient for triggering mod-
ule actions like flushing caches and the like.

The indices of the returned mapping are the action
descriptions that will show up on each button (e g "flush
cache"), and the corresponding values are the callbacks for
each button respectively. These functions may take an
optional RequestID argument, where this id object refers to
the id object in the admin interface sent with the request
used to invoke the action by the administrator.

string query_internal_location()
Returns the internal mountpoint, wherefind_internal() is
mounted.

string query_absolute_internal_location(RequestID id)
Returns the internal mountpoint as an absolute path. This
includes the site prefix, which is typically the empty string

for a site mounted at a URL with no path component, suc
as"http://*/" , as opposed to for example"http://*/

roxen/2.1/" , which would be prefixed "roxen/2.1/".
This method is recommended when you want to gene

ate a link to your internal resources supplied by
find_internal() .

void set_module_creator(string|array(string) c)
Set the name and optionally email address of the author o
the module. Names on the format"author name

<author_email>" will end up as links on the module's
information page in the admin interface. In the case of mul
ple authors, an array of such strings can be passed to ge
ate one link per author (the array order is preserved).

void set_module_url(string to)
A common way of referring to a location where you main-
tain information about your module, or similar. The URL
will turn up on the module's information page in the admin
interface, referred to as the module's home page.

End of /roxen/2.1/programmer/roxen-modules/
common_api.xml

Module Variables

Start of /roxen/2.1/programmer/roxen-modules/defvar.xml

Roxen modules have other common denominators than th
mentioned on the previous pages - the concept of administra
configurable variables for whatever module configuration da
your module might depend on. Besides the variable types m
tioned here, you may extend Roxen with user-defined da
types, for which you create the widgetry, define storage me
ods and so on.

The module variables accessable from the administration int
face are defined usingdefvar() , queried usingquery() or
QUERY(), can be undefined usingkillvar() , may be altered
run-time using set() or tweaked with using the variable
object's own methods, after getting hold of the variable obje
with getvar() .

Each roxen module may or may not choose to define a
number of variables, each having a name unique to the mod
(to identify it when referring to it, polling or modifying its
value, visibility or similar). The variable definition is shared
among all instances of your module, but each module may ha
been set up with different operating parameters by the admin
trator, so their values may differ. The configuration data resid
with the configuration data of the virtual server that the modu
is loaded in, where each instance of a module has its o
region.

As a technical curiosity, it can be noted that module var
ables are quite memory conservative - even a huge roxen se
setup with thousands of virtual servers, each with several mo
ules loaded, won't gnaw away as much memory as would
older roxen (or any caudium) server. This is possible, sin
module variables that have not changed from their preset valu
(which is typically the case, since most variables have reaso
able defaults), may fall back on that value, which can be foun
in the module's definition, instead of among its data.

In short: if you encounter some situation where there is re
son to provide an administrator a choice of operating param
ters, don't make constant declarations in your code - defi
module variables instead. It's easy, both for you as a progra
mer and for the administrator, more fault-tolerant (not havin
anybody meddling with your code), as robust as you care
17

ut

ri-

.

s;
le

-
e
the
nto

e

e

by

g

g

of

ut
a-

L
nd
make it (you may equip your variable objects with hooks to ver-
ify input validity, should the datatype be too lax for your own
taste and purposes), it provides an easy way to document your
variables, only show those variables that are relevant given the
circumstances and finally - it even looks nice! (Never underesti-
mate the value of readable code. :-)

Variable.Variable defvar(string name, Variable.Variable
var)

Defines a module variablevar, giving it the unique identifier
name (this name is used when accessing the variable with
query() , set() and friends). The recommended place to
put yourdefvar() declarations is in your module'scre-

ate() callback, such as:
For info on the available variable types, and the full host of
API methods available in the variable objects themselves,
see the docs forVariable.Variable.

In roxen versions 2.0 and older, thedefvar() API
looked a bit differently (and the old-style API is still legal,
for backwards compatibility) - it is mentioned here only for
ease of reading and understanding legacy code:

Variable.Variable defvar(string var, mixed value, string
name, int type, string doc, array|void misc, int|function|void
hide_if_true)

A deprecated (although it will be supported for the forsee-
able future) compatibility version of the function. This is
how you read its parameters:

string var
The variable identifier

mixed value
The default value

string name
The name of the variable that gets presented in the
admin interface

int type
The type of the variable (one of theTYPE_ defines
defined inmodule.h). These constants correspond to
the variousVariable.Variable classes (similarly
named minus the TYPE_ prefix) used in the new
API.

string doc
The variable documentation string

array|void misc
Additional type-dependent data

int|function|void hide_if_true

mixed query(string var, int|void ok)
Query the value of the variablevar. If ok is true, it is not an
error if the specified variable does not exist. Instead, UNDE-
FINED (the value0 with zero_type()==1) is returned.

QUERY(var)
Compatibility/convenience macro defined inmodule.h that
is synonym toquery() , apart from its syntax. If you prefer
the syntaxQUERY(var) to query("var") , feel free to use
that instead. There used to be a speed difference in older ver-
sions of roxen, where theQUERY() method was slightly
faster (didn't perform any error checking), but that is no
longer the case.

int killvar(string var)
Undefine the previously defined variablevar. This is useful
mainly when inheriting another module (filesystem.pike ,

for instance), and all of its variables do no apply to your
extended or otherwise modified version.

void set(string var, mixed value)
Set the variablevar to the specified value. Typically used
when you have invisible variables where you save some
form of module state that should survive a server restart, b
that is not meaned to be modified by an administrator.

Variable.Variable getvar(string name)
Return the variable object associated with the specified va
able.

End of /roxen/2.1/programmer/roxen-modules/defvar.xml

Tag Modules

Start of /roxen/2.1/programmer/roxen-modules/tag.xml

The module type constant for tag modules is MODULE_TAG
Extending RXML with your own tags is done by imple-

menting tag modules. There are two methods of writing tag
simpletags being by far the easier one, RXML.pmod class sty
being the more powerful of the two.

Writing simpletags is mostly a matter of naming your mod
ule's methods; methods with a leading "simpletag_" will b
caught as tag definitions, and the tag name constructed from
function name (after underscores having been changed i
dashes).

A tag definition such as

string simpletag_my_test_tag(string name, mapping a
rg, string contents, RequestID id)

will generate a tag<my-test-tag> , and when encountered in
an RXML parsed document (for example,<my-test-tag

testing='yes'>hi.</my-test-tag>), the function will be
called with the arguments filled with, in turn, the name of th
tag ("my-test-tag"), a mapping of its arguments
((["testing":"yes"])), its contents ("hi.") and the
RequestID object. The string returned by the function will b
inserted in the document, replacing the tag and its contents.

By providing an integer

int simpletag_my_test_tag_flags = RXML.FLAG_DEBUG

you can alter how the RXML parser calls and treats your tag,
oring together the flags of your choice from the list below.

RXML Tag Flags
• Write a lot of debug during the execution of the tag, showin

what type conversions are done, what callbacks are being
called etc. Note that DEBUG must be defined for the debu
printouts to be compiled in (normally enabled with the --
debug flag to Roxen).

• Flags this as a processing instruction tag (i.e. one parsed
with the <?name ... ?> syntax in XML). The string after the
tag name to the ending separator constitutes the content
the tag. Arguments are not used.

A still easier way of making processing instruction tags
is by calling your tag function simple_pi_tag_my_tag_name
right away. the argument template for the tag is the same, b
the argument mapping sent is always empty, for obvious re
sons.

• If set, the tag does not use any content. E.g. with an HTM
parser this defines whether the tag is a container or not, a
in XML parsing it simply causes the content (if any) to be
thrown away.
18

re
an

e

al
ns
d
e

le
si-

s

-
d-

ary
m

o a
ed
tat

n

n

ing

me
he
est

a
les
ent

s
y.
e's

to
a

y

e
e-
• Makes the PXml parser parse the tag in an HTML compati-
ble way: If FLAG_EMPTY_ELEMENT is set and the tag
doesn't end with '/>', it will be parsed as an empty element.
The effect of this flag in other parsers is currently undefined.

• Never apply any prefix to this tag.
• Don't preparse the content with the PXml parser. This is

always the case for PI tags, so this flag doesn't have any
effect for those. This is only used in the simple tag wrapper.
Defined here as placeholder.

• Postparse the result with the PXml parser. This is only used
in the simple tag wrapper. Defined here as placeholder.

Class-based Tag API

To be continued...

End of /roxen/2.1/programmer/roxen-modules/tag.xml

Location (Filesystem) Modules

Start of /roxen/2.1/programmer/roxen-modules/loca-
tion.xml

mapping|Stdio.File|int(-
1..0) find_file(string path, RequestID id)

The return value is either a response mapping, an open file
descriptor or 0, signifying that your module did not handle the
request. Return -1 to indicate the resource being a directory.

This is the fundamental method of all location modules and
is, as such, required. It will be called to handle all accesses
below the module's mount point. The path argument contains
the path to the resource, in the module's own name space, and
the id argument contains the request information object.

That the path is in the modules name space means that the
path will only contain the part of the URL after the module's
mount point. If a module is mounted on/here/ and a user
requests/here/it/is.jpg , the module will be called with a
path of it/is.jpg . That way, the administrator can set the
mount point to anything she wants, and the module will keep
working. Note that changing the mount point to/here would
give the module the path/it/is.jpg for that request.

A zero return value means that the module could not find the
requested resource. In that case roxen will move on and try to
find the resource in in other location modules. Returning -1
means that the requested resource is a directory, in which case
the request will be handled by a directory type module.

If the module could handle the request, the return value is
either a response mapping or a Stdio.File object containing the
requested file.

string query_location()

Returns the location in the virtual server's where your location
module is mounted. If you make a location module and leave
out this method, the default behaviour inherited from mod-
ule.pike will return the value of the module variable 'location'.

Stat stat_file(string path, RequestID id)

The stat_file() method emulates Pike'sfile_stat() method,
returning information about a file or directory. path is the path
to the file or directory in the module's name space, id is the
request information object.

stat_file() is most commonly used by directory type modules
to provide informative directory listings, or by the ftp protocol
module to create directory listings.

The return value it is expected to be a Stat array (or, in futu
versions, a Stdio.Stat object, for instance created from such
array):

({ mode, size, atime, mtime, ctime, uid, gid })

mode is an integer containing the unix file permissions of th
file. It can be ignored.

size is an integer containing the size of the file, or a speci
value in case the object is not actually a file. Minus two mea
that it is a directory, minus three that it is a symbolic link an
minus four that it is a device special file. This value must b
given.

atime is a unixtime integer containing the last time the file
was accessed (seconds since 1970). It can be ignored.

mtime is a unixtime integer containing the last time the file
was modified (seconds since 1970). It will be used to hand
Last-Modified-Since requests and should be supplied if pos
ble.

ctime is a unixtime integer containing the time the file wa
created (seconds since 1970). It can be ignored.

uid is an integer containing the user id of this file. It will be
correlated with the information from the current authentifica
tion type module, and used by the CGI executable support mo
ule to start CGI scripts as the correct user. It is only necess
for location modules that provide access to a real file syste
and that implement the real_file() method.

gid is an integer containing the group id of the file. It is
needed when uid is needed.

mapping(string:Stat) find_dir_stat(string path, Re
questID id)

Need not be implemented. The parameter `path' is the path t
directory, `id' is the request information object and the return
mapping contains all filenames in the directory mapped to S
objects for the same files respectively.

If this method is not implemented, the find_dir_stat functio
inherited frommodule.pike maps the result of find_dir() over
stat_file() to produce the same result. Providing your ow
find_dir_stat might be useful if your module maps its files from
a database, in which case you would gain performance by us
just one big query instead of hordes of single-file queries.

string|void real_file(string path, RequestID id)

This method translates the path of a file in the module's na
space to the path to the file in the real file system. path is t
path to the file in the module's name space, id is the requ
information object.

If the file could not be found, or the file doesn't exist on
real file system, zero should be returned. Only location modu
that access server files from a real file system need implem
this method. See also the stat_file() method.

array(string)|void find_dir(string path, RequestID
id)

The find_dir() returns a directory listing; an array of string
containing the names of all files and directories in this director
The path parameter is the path to the directory, in the modul
name space, id is the request information object.

This method is usually called because a previous call
find_file() returned that this path contained a directory and
directory type module is right now trying to create a director
listing of this directory. Note that it is possible that the
find_dir() is called in several location modules, and that th
actual directory listing shown to the user will be the concat
nated result of all those calls.
19

nt/"
ing
u

t

d

d

se

be

og
ltin

n-
the
To find information about each entry in the returned array
the stat_file() is used.

End of /roxen/2.1/programmer/roxen-modules/location.xml

File Extension Modules

Start of /roxen/2.1/programmer/roxen-modules/
file_extension.xml

File extension modules handle one or several different file
types. A file extension module is called after a location, or other
module type, has returned a Stdio.File object with the correct
extension.

The module type constant is
MODULE_FILE_EXTENSION.

array(string) query_file_extensions()

Returns an array of strings containing the extensions this mod-
ule handles. It should be configurable by the user, the easiest
way would be to use a configuration variable of
TYPE_STRING_LIST.

mapping handle_file_extensions(Stdio.File file, st
ring ext, RequestID id)

The method that will be called to do the actual work. file is the
file object that a previous module returned. ext is the extension
of the request, id the request information object. The return
value is a response mapping.

End of /roxen/2.1/programmer/roxen-modules/
file_extension.xml

Filter Modules

Start of /roxen/2.1/programmer/roxen-modules/filter.xml

Type MODULE_FILTER modules.

mapping|zero filter(mapping|zero result, RequestID
id)

The filter() method is called for all requests just before the
final resulting page is sent back to the browser, except when:
• The reply for a request is found in the memory cache.
• A module calls id->handle_reply() directly after accepting

responsibility for the connection.

In effect, filter modules are essentially MODULE_LAST mod-
ules that get called for all requests, not only failed requests. The
result parameter is either a zero (for an unhandled request) or a
standard response mapping, as returned by any previous mod-
ules in the server. The id argument, as usual, is the request
information object associated with the request.

The returned value is either zero, here signifying that you
didn't rewrite or in any way alter the result mapping, or a new or
changed result mapping.

Since all data server by your virtual server gets passed your
filter module(s), you typically need to make sure your filter
module doesn't interfere with such requests it wasn't intended to
touch, or you may end up with some pretty hard to find prob-
lems.

End of /roxen/2.1/programmer/roxen-modules/filter.xml

Authentication Modules

Start of /roxen/2.1/programmer/roxen-modules/authentica-
tion.xml

Leading note: The MODULE_AUTH API described on this
page is likely subject to change in the not too distant future.

array|int auth(array(string) auth, RequestID id)

The auth method of your MODULE_AUTH type module is
called when the browser sent either of theAuthorization or
Proxy-Authorization HTTP headers (see RFC 2617).

The auth argument passed is calculated as header_conte
", but where the second element is base64-decoded (mean
that you won't need to do so yourself). A typical auth array yo
might receive could look like({ "Basic", "Aladdin:open

sesame" }) , where Aladdin would be the user name the clien
logged in with, and "open sesame" his password.

The three elements in the returned array are, in order:

1. an int(0..1) signifying authentication failure (0) or success
(1)

2. a string with the username (authenticated or not)

3. when failed, a string with the password used for the faile
authentication attempt, otherwise the integer zero.

See also Roxen.http_auth_required() an
Roxen.http_proxy_auth_required().

string user_from_uid(int uid, RequestID|void id)

Return the login name of the user with uid `uid'.

array(string) userlist(RequestID|void id)

Return an array of all valid user names.

array(string|int) userinfo(string user, RequestID|v
oid id)

Return /etc/passwd-style user information for the user who
login name is `user'. The returned array consists of:

({ login name,
crypted password,
used id,
group id,
name,
homedirectory,
login shell

})

All entries should be strings, except uid and gid, who should
integers.

End of /roxen/2.1/programmer/roxen-modules/authentica-
tion.xml

Logger Modules

Start of /roxen/2.1/programmer/roxen-modules/logger.xml

A log module handles logging of requests. It can be used to l
requests by other means then log files, or to disable the bui
logging for some requests.

The module type constant is MODULE_LOGGER.

int(0..1) log(RequestID id, mapping response)

id is the request information object, response is a mapping co
taining the response information that are about to be sent to
20

ce.

r-
ts.

ce
til
ero

is

ls
e

st-

is
e

d.

e

ory
is
browser. If the log() method returns one the logging will stop,
and no other log modules will be called nor will the internal
logging take place.

End of /roxen/2.1/programmer/roxen-modules/logger.xml

First Modules

Start of /roxen/2.1/programmer/roxen-modules/first.xml

A first module is called right after the authentification module.
It has the opportunity of handling the whole request before the
normal processing.

The module type constant is MODULE_FIRST.

mapping first_try(RequestID id)

id is the request information object. The return value is either a
response mapping or zero (0) for non-handled requests.

End of /roxen/2.1/programmer/roxen-modules/first.xml

Last Modules

Start of /roxen/2.1/programmer/roxen-modules/last.xml

The module type constant for last resort modules is
MODULE_LAST.

mapping|int(0..1) last_resort(RequestID id)

The last_resort() method is called when all previous mod-
ules have failed to return a response.

The id argument is the request information object associated
with the request.

The returned value is either zero, if you didn't handle the
request, a response mapping or the integer one, signifying that
the request should be processed again from start (used only by
the Path info support module).

End of /roxen/2.1/programmer/roxen-modules/last.xml

Provider Modules

Start of /roxen/2.1/programmer/roxen-modules/pro-
vider.xml

Provider modules are modules that provide services to other
modules. The module type constant is MODULE_PROVIDER.

string|array(string) query_provides()

returns the name of the service or services this module provides,
either as a string or as an array of strings.

Methods available to other modules are:

RoxenModule conf->get_provider(string service)

Returns the provider module that handles the service 'service',
or one with highest priority if there are several. conf is the con-
figuration object for the virtual server (id->configuration()
fetches the current request's configuration). Any public function
(or data element) can be reached via the returned module
object.

array(RoxenModule) conf-
>get_providers(string service)

Returns all provider modules that handle the service servi
conf is the configuration object for the virtual server.

void map_providers(string service, string fun, mix
ed ... args)

Calls the method named fun in all modules providing the se
vice service. The method will be called with args as argumen

mixed call_provider(string service, string fun, mi
xed ... args)

Calls the method named fun in modules providing the servi
service with the arguments args. Modules will get called un
one module returns a non-zero value. That return value, or z
if all modules returned zero, will be returned.

End of /roxen/2.1/programmer/roxen-modules/pro-
vider.xml

Content Type Modules

Start of /roxen/2.1/programmer/roxen-modules/types.xml

The module type constant for content-type modules
MODULE_TYPES.

array(string|int) type_from_extension(string ext)

Return an array({ content_type, content_encoding })

devised from the file extension `ext'. When `ext' equa
"default", roxen wants to know a default type/encoding. If th
content-type returned is the string"strip" , the content-encod-
ing returned will be kept, and another call be made for the la
but-one file extension to get the content type (eg for".tar.gz"

to resolve correctly).

End of /roxen/2.1/programmer/roxen-modules/types.xml

Directory Listing Modules

Start of /roxen/2.1/programmer/roxen-modules/directo-
ries.xml

A directory type module handle accesses to directories. This
usually done by creating a directory listing of the contents in th
directory, or finding a suitable index file to be returned instea
There can only be one directory module in a virtual server.

The module type constant for directory modules ar
MODULE_DIRECTORIES.

mapping parse_directory(RequestID id)

Returns a normal response containing either a suitable direct
listing or an index file. The path to the directory being listed
found in id->>not_query.

End of /roxen/2.1/programmer/roxen-modules/directo-
ries.xml
21

22

at

d

t
-

-

re

t

n

n-

kie
Roxen-specific Pike Modules

End of /roxen/2.1/programmer/pike-modules/index.xml

Roxen

Start of /roxen/2.1/programmer/pike-modules/Roxen.xml

These methods are all accessable from everywhere within roxen
via Roxen.methodname(args). (Although technically, they don't
really all belong to Roxen.pmod.)

Response Methods

Convenience functions to use in Roxen modules. When you just
want to return a string of data, with an optional type, this is the
easiest way to do it if you don't want to worry about the internal
roxen structures.

mapping http_string_answer(string text, string|void type)
Generates a response mapping with the given text as the
request body with a content type oftype (or "text/html" if
none was given).

mapping http_file_answer(Stdio.File text, string|void type,
int|void len)

Generates a response mapping with request body contents
drawn from the given file object with a content type oftype
(or "text/html" if none was given). If no length is supplied, it
is calculated for you automatically.

mapping http_rxml_answer(string rxml, RequestID id,
void|Stdio.File file, void|string type)

Parse the supplied rxml and generate a response mapping
with a content type oftype (or "text/html" if none was
given).

mapping http_low_answer(int errno, string data)
Return a response mapping with the error and data specified.
The error is infact the status response, so '200' is HTTP Doc-
ument follows, and 500 Internal Server error, etc.

mapping http_pipe_in_progress()

mapping http_try_again(float delay)
Causes the request to be retried in delay seconds.

mapping http_redirect(string url, RequestID|void id)
Simply returns a http-redirect message to the specified URL.
If the url parameter is just a virtual (possibly relative) path,
the current id object must be supplied to resolve the destina-
tion URL.

mapping http_stream(Stdio.File from)
Returns a response mapping where the data returned to the
client will be streamed raw from the given Stdio.File object,
instead of being packaged by roxen. In other words, it's
entirely up to you to make sure what you send is HTTP data.

mapping http_auth_required(string realm, string|void mes-
sage)

Generates a response mapping that will instruct the web
browser that the user needs to authorize himself before

being allowed access.realm is the name of the realm on the
server, which will typically end up in the browser's prompt
for a name and password (e g "Enter username forrealm at
hostname:"). The optional message is the message body th
the client typically shows the user, should he decide not to
authenticate himself, but rather refraim from trying to
authenticate himself.

In HTTP terms, this sends a401 Auth Required

response with the headerWWW-Authenticate: basic

realm=" realm" . For more info, see RFC 2617.

mapping http_proxy_auth_required(string realm,
void|string message)

Generates a response mapping that will instruct the client
end that it needs to authenticate itself before being allowe
access.realm is the name of the realm on the server, which
will typically end up in the browser's prompt for a name and
password (e g "Enter username forrealm athostname:").
The optional message is the message body that the clien
typically shows the user, should he decide not to authenti
cate himself, but rather refraim from trying to authenticate
himself.

In HTTP terms, this sends a407 Proxy authentica-

tion failed response with the headerProxy-Authenti-

cate: basic realm=" realm" . For more info, see RFC
2617.

Utility Functions

void set_cookie(RequestID id, string name, string value,
int|void expire_time_delta, string|void domain, string|void
path)

Set the cookie specified by 'name' to 'value'. Sends a Set
Cookie header.

The expire_time_delta, domain and path arguments a
optional.

If the expire_time_delta variable is -1, the cookie is se
to

expire five years in the future. If it is 0 or ommited, no
expire information is sent to the client. This usualy results i
the cookie being kept until the browser is exited.

string http_date(int t)
Returns a http_date, as specified by the HTTP-protocol sta
dard. This is used for logging as well as the Last-Modified
and Time heads in the reply.

string http_encode_string(string f)
Encode a string for inclusion in HTTP headers.

string http_encode_cookie(string f)
Encode a string for inclusion in a cookie.

string http_encode_url(string f)
Encode a string for inclusion in a URL.

void remove_cookie(RequestID id, string name, string
value, string|void domain, string|void path)

Remove the cookie specified by 'name'. Sends a Set-Coo
header with an expire time of 00:00 1/1 1970. The domain
and path arguments are optional.
23

End of /roxen/2.1/programmer/pike-modules/Roxen.xml
24

ps
a
g
e

t, as
ly-
ge

se
put

as

-
s

is

to

lt
Pike

Pike, the native programming language of roxen, can be used in
various contexts within roxen. The scope of this chapter is to
explain how pike within roxen differs from stand-alone pike as
well as where and how you can deploy pike code within your
applications.

End of /roxen/2.1/programmer/pike/index.xml

Script

Start of /roxen/2.1/programmer/pike/script.xml

How to make pike scripts and how to use them within (and pos-
sibly also independent of) roxen.

Pike scripts differ from e g CGI or Perl scripts, by being run
inside of Roxen WebServer instead of as an external process.
They share the characteristics of being executed when a user
tries to access them, but they have the added benefit of easy
access to all Roxen API:s, being written in the server's native
language. This makes them much more efficient, generally
respond faster and use less resources. It is also possible for
them to cache data between requests, since they will stay resi-
dent after being loaded and compiled.

Since Pike scripts are run internally in the web server they
have security implications, a Pike script can do anything the
web server can. It is however possible to run them in a mode
where a separate process is created for each request. This is
safe, but on the other hand you miss much of the advantages of
Pike scripts mentioned above.

API Methods
• create , although not strictly a part of the Roxen API, is

called once when instantiating the script during compilation,
and never again.

• The methodparse gets executed for each request to the
script. It returns either a string containing RXML code or a
response mapping created via one of the response methods
(Roxen.http_string_answer and friends).

• Normally, scripts are kept resident within the server between
request after having once been compiled. They are, as one
might expect, automatically reloaded if they (or any file they
have inherited) have changed on disk. This behaviour can be
altered by adding ano_reload function to your script. The
no_reload function, when present, overrules this behaviour.
If it returns zero, the script is reloaded, if it returns one, it is
not. It gets called before each new request after the first one
(when it was originally compiled).

By default, pike scripts can be reloaded by requesting
them with the pragma no-cache header. This is achieved in
Netscape by pressing reload and, unfortunately, not at all, in
Internet Explorer. You may easily devise any reloading pol-
icy by testing data from the id object; this example reloads
the script when the query variable "reload" is set:

An example script:

int count = 0;

mapping parse(RequestID id)
{

string times, reply = #"<html><head>
<title>Hello World</title>
</head><body>
<h1>Hello, world!</h1>

<p>(Did you know that I've hailed the
world %s since I was loaded?)</p>
</body></html>";

switch(++count)
{

case 1: times = "just once"; break;
case 2: times = "twice already"; break;
default: times = "a smashin g " + coun t + " time

s";
}
return Roxen.http_string_answer(sprintf(reply, ti

mes));
}

End of /roxen/2.1/programmer/pike/script.xml

Processing Instruction

Start of /roxen/2.1/programmer/pike/tag.xml

 How to use the<?pike ... ?> processing instruction.

The <?pike ... ?> processing instruction tag (PI for short) is
used to smoothly inline pike code in your pages. The perha
most usable aspect of this is for quickly throwing together
small webpage application or for experimenting and toyin
around with the roxen programming environment. Since th
code resides in the page, it won't be so reusable a componen
would a roxen module, but the short cycle time between app
ing a change and seeing the results right after another pa
reload make it an ideal development tool.

Methods

Three additional methods set the pike PI tag apart from tho
present everywhere else within roxen. These handle the out
facilities of the tag:
• Outputs the string to the page. Takes the same arguments

write or sprintf in common pike, but appends the result to
the output buffer. If given only one string argument, it's writ
ten directly to the output buffer without being interpreted a
a format specifier.

• Returns the contents of the output buffer and resets it. Th
buffer contains everything written so far via write (or, by
inference, the available convenience syntaxes for write)
since the start of the processing instruction or the last call
flush().

• Parses the string with the RXML parser, returning the resu
after parsing.

Special Variables
• The RequestID object, bearing all request local state, is

available in the `id' variable.
25

• All scopes (including _) are accessable directly as variables
named after the scope itself; hence _, roxen, form, variables
and so on are present for easy reading (and/or tampering :-).
Thus roxen.uptime, for instance, is an integer marking the
number of seconds since roxen was started, just as
roxen.uptime would be in a section of RXML code (these
shorthands for RXML.user_get_var and
RXML.user_set_var only work for entities in scopes avail-
able in the context when the parser encountered the process-
ing instruction).

For meshing pike, RXML code and common HTML, there are
other convenience features present, in the form of certain com-
ments treated specially. //O (the letter O) comments are written
out directly into the page, and //X comments are parsed as
RXML on the spot and written out into the result page. These
shorthands are equivalent to the calls write(my_string) and
write(rxml(my_string)) respectively.

An example pike processing instruction that shows some
server info and toggles the value of a cookie:

<?pike
//X <gtext>Server Info</gtext>

write("This is %s running %s, and we've been up f

or %d seconds.",
roxen.version, roxen["pike-

version"], roxen.uptime);

//X
<gtext>Cookies</gtext>

//

X <pre><insert scope='cookie' variables='full' /></
pre>

if(cookie.hi == "Hi!")
cookie.hi = "Ho!";

else
cookie.hi = "Hi!";

?>

End of /roxen/2.1/programmer/pike/tag.xml
26

n-
Java

End of /roxen/2.1/programmer/java/index.xml

AbstractLocationModule

Start of /roxen/2.1/programmer/java/AbstractLocation-
Module.html

java.lang.Object
|
+--com.roxen.roxen.Module

|

+-- com.roxen.roxen.AbstractLocationModule

An abstract adaptor class that provides default implementations
for most methods in the LocationModule interface.

A module inheriting this class must either create a module
variable location using defvar, or provide a different implemen-
tation of the queryLocation method.

public AbstractLocationModule()

public java.lang.String queryLocation()

public java.lang.String[] findDir (java.lang.String f

,
RoxenRequest id)

public java.lang.String realFile(java.lang.String f,

RoxenRequest id)

public int[] statFile(java.lang.String f,

RoxenRequest id)

End of /roxen/2.1/programmer/java/AbstractLocationMod-
ule.html

ExperimentalModule

Start of /roxen/2.1/programmer/java/ExperimentalMod-
ule.html

The interface for modules that should be marked as experimen-
tal in the module listing. It contains no methods, implementing
it just flags the module as experimental.

End of /roxen/2.1/programmer/java/ExperimentalMod-
ule.html

FileExtensionModule

Start of /roxen/2.1/programmer/java/FileExtensionMod-
ule.html

The interface for modules which handle a specific file exte
sion.

public java.lang.String[] queryFileExtensions()

public RoxenResponse handleFileExtension(java.io.Fil

e file,
java.lang.

String ext,
RoxenReque

st id)

End of /roxen/2.1/programmer/java/FileExtensionMod-
ule.html

Frame

Start of /roxen/2.1/programmer/java/Frame.html

java.lang.Object
|

+-- com.roxen.roxen.Frame

 An object representing an RXML parse frame

End of /roxen/2.1/programmer/java/Frame.html

HTTP

Start of /roxen/2.1/programmer/java/HTTP.html

java.lang.Object
|

+-- com.roxen.roxen.HTTP
27

A support class providing HTTP related functionality. Rather
than using this class directly, all these functions can be accessed
through the RoxenLib class.

public static java.lang.String httpEncodeString(java

.lang.String f)

The following characters are replaced with% escapes:SP,

TAB, LF, CR, %, ', ", NUL .

public static RoxenResponse httpLowAnswer (int erro

r,
java.lang

.String data)

public static RoxenResponse httpLowAnswer (int erro

r)

public static RoxenResponse httpStringAnswer (java.l

ang.String text,
java.l

ang.String type)

public static RoxenResponse httpStringAnswer (java.l

ang.String text)

public static RoxenResponse httpRXMLAnswer (java.l

ang.String text,
java.lan

g.String type)

public static RoxenResponse httpRXMLAnswer (java.l

ang.String text)

public static RoxenResponse httpFileAnswer(java.io.R

eader text,
java.lan

g.String type,
long len

)

public static RoxenResponse httpFileAnswer(java.io.R

eader text,
java.lan

g.String type)

public static RoxenResponse httpFileAnswer(java.io.R

eader text)

public static RoxenResponse httpFileAnswer(java.io.I

nputStream text,
java.lan

g.String type,
long len

)

public static RoxenResponse httpFileAnswer(java.io.I

nputStream text,
java.lan

g.String type)

public static RoxenResponse httpFileAnswer(java.io.I

nputStream text)

public static RoxenResponse httpFileAnswer(java.io.F

ile text,
java.lan

g.String type,
long len

)
throws java.io.

FileNotFoundException

public static RoxenResponse httpFileAnswer(java.io.F

ile text,
java.lan

g.String type)
throws java.io.

FileNotFoundException

public static RoxenResponse httpFileAnswer(java.io.F

ile text)
throws java.io.

FileNotFoundException

public static RoxenResponse httpRedirect(java.net.UR

L url)

public static RoxenResponse httpAuthRequired (java.l

ang.String realm,
java.l

ang.String message)

public static RoxenResponse httpAuthRequired (java.l

ang.String realm)

public static RoxenResponse httpProxyAuthRequired (j

ava.lang.String realm,
j

ava.lang.String message)

public static RoxenResponse httpProxyAuthRequired (j

ava.lang.String realm)

End of /roxen/2.1/programmer/java/HTTP.html

LastResortModule

Start of /roxen/2.1/programmer/java/LastResortMod-
ule.html

public RoxenResponse last_resort(RoxenRequest id)

End of /roxen/2.1/programmer/java/LastResortMod-
ule.html

LocationModule

Start of /roxen/2.1/programmer/java/LocationModule.html
28

The interface for modules which have a specific URL path in
the virtual file system.

public java.lang.String queryLocation()

public RoxenResponse findFile (java.lang.String f,

RoxenRequest id)

public java.lang.String[] findDir (java.lang.String f

,
RoxenRequest id)

public java.lang.String realFile(java.lang.String f,

RoxenRequest id)

public int[] statFile(java.lang.String f,

RoxenRequest id)

End of /roxen/2.1/programmer/java/LocationModule.html

Module

Start of /roxen/2.1/programmer/java/Module.html

java.lang.Object
|

+-- com.roxen.roxen.Module

The base class for Roxen modules. All modules must inherit
this class, directly or indirectly.

Each module should also implement one or more of the spe-
cific module type interfaces.

public static final int TYPE_STRING

public static final int TYPE_FILE

public static final int TYPE_INT

public static final int TYPE_DIR

public static final int TYPE_STRING_LIST

public static final int TYPE_MULTIPLE_STRING

public static final int TYPE_INT_LIST

public static final int TYPE_MULTIPLE_INT

public static final int TYPE_FLAG

public static final int TYPE_TOGGLE

public static final int TYPE_DIR_LIST

public static final int TYPE_FILE_LIST

public static final int TYPE_LOCATION

public static final int TYPE_TEXT_FIELD

public static final int TYPE_TEXT

public static final int TYPE_PASSWORD

public static final int TYPE_FLOAT

public static final int TYPE_MODULE

public static final int TYPE_FONT

public static final int VAR_EXPERT

public static final int VAR_MORE

public static final int VAR_DEVELOPER

public static final int VAR_INITIAL

public Module()

public abstract java.lang.String queryName()

public abstract java.lang.String info()

public RoxenConfiguration myConfiguration ()

protected java.lang.String queryInternalLocation ()

protected RoxenResponse findInternal (java.lang.String

f,
RoxenRequest i

d)

public java.lang.String status()

protected void start()

protected void stop()

protected void defvar(java.lang.String var,

java.lang.Object value,
java.lang.String name,
int type,
java.lang.String doc)

protected void defvar(java.lang.String var,
29

e

java.lang.Object value,
java.lang.String name,
int type)

public java.lang.Object query(java.lang.String name

)

public int queryInt (java.lang.String name)

public java.lang.String queryString(java.lang.String

name)

protected void set(java.lang.String name,

java.lang.Object value)

protected void set(java.lang.String name,

int value)

End of /roxen/2.1/programmer/java/Module.html

ParserModule

Start of /roxen/2.1/programmer/java/ParserModule.html

 The interface for modules which define RXML tags.

public SimpleTagCaller[] querySimpleTagCallers()

End of /roxen/2.1/programmer/java/ParserModule.html

ProviderModule

Start of /roxen/2.1/programmer/java/ProviderModule.html

 The interface for modules providing services to other modules.

public java.lang.String queryProvides()

End of /roxen/2.1/programmer/java/ProviderModule.html

RoxenClassLoader

Start of /roxen/2.1/programmer/java/RoxenClass-
Loader.html

java.lang.Object
|
+--java.lang.ClassLoader

|
+--java.security.SecureClassLoader

|
+--java.net.URLClassLoader

|

+-- com.roxen.roxen.RoxenClass-
Loader

public RoxenClassLoader(java.net.URL[] urls)

public void addJarFile(java.lang.String jarFileName)

throws java.io.FileNotFoundExceptio
n,

java.io.IOException

public static java.lang.String getModuleClassName(
java.lang.String jarFileName)

throws j
ava.io.FileNotFoundException,

j
ava.io.IOException

End of /roxen/2.1/programmer/java/RoxenClass-
Loader.html

RoxenConfiguration

Start of /roxen/2.1/programmer/java/RoxenConfigura-
tion.html

java.lang.Object
|

+-- com.roxen.roxen.RoxenConfiguration

A class representing the configuration of a virtual server in th
Roxen server.

public RoxenConfiguration()

public java.lang.String getRealPath(java.lang.String

filename,
RoxenRequest id

)

public java.lang.String getFileContents(java.lang.St

ring filename,
RoxenReques

t id)

public java.lang.String getMimeType(java.lang.Stri

ng filename)

public java.lang.Object query(java.lang.String name

)

public java.lang.String queryInternalLocation (Module

m)
30

tags,
re
ns
public java.lang.String queryString(java.lang.String

name)

public java.lang.String queryInternalLocation ()

public Module[] getProviders(java.lang.String provid

es)

public Module getProvider(java.lang.String provides)

End of /roxen/2.1/programmer/java/RoxenConfigura-
tion.html

RoxenFileResponse

Start of /roxen/2.1/programmer/java/RoxenFileRe-
sponse.html

java.lang.Object
|
+--com.roxen.roxen.RoxenResponse

|

+-- com.roxen.roxen.RoxenFileResponse

A class of responses using a file as their source. Use the meth-
ods in the HTTP class to create objects of this class.

End of /roxen/2.1/programmer/java/RoxenFileRe-
sponse.html

RoxenLib

Start of /roxen/2.1/programmer/java/RoxenLib.html

java.lang.Object
|
+--com.roxen.roxen.HTTP

|

+-- com.roxen.roxen.RoxenLib

A support class containing useful methods for interpreting
requests and synthesizing responses.

public static java.lang.String htmlEncodeString(jav

a.lang.String str)

The following characters are replaced with HTML entities:&,

<, >, ", ', NUL .

public static java.lang.String htmlDecodeString(jav

a.lang.String str)

All HTML 4.0 entities are replaced with their literal equivalent.

public static java.lang.String doOutputTag(java.ut

il.Map args,
java.uti

l.Map[] varArr,
java.lan

g.String contents,
RoxenReq

uest id)

This method is used to create tags such as database query
where zero or more results in the form of variable bindings a
applied to a fixed template, and the results of the subsitutio
are concatenated to form the total result.

public static java.lang.String parseRXML (java.lan

g.String what,
RoxenReque

st id)

public static java.lang.String makeTagAttributes(ja

va.util.Map in)

public static java.lang.String makeTag(java.lang.S

tring s,
java.util.Ma

p in)

public static java.lang.String makeEmptyElemTag(j

ava.lang.String s,
jav

a.util.Map in)

public static java.lang.String makeContainer(java.l

ang.String s,
java.u

til.Map in,
java.l

ang.String contents)

End of /roxen/2.1/programmer/java/RoxenLib.html

RoxenRequest

Start of /roxen/2.1/programmer/java/RoxenRequest.html

java.lang.Object
|

+-- com.roxen.roxen.RoxenRequest

 A class representing requests from clients.

public final RoxenConfiguration conf

public final java.lang.String rawURL

public final java.lang.String prot

public final java.lang.String clientprot
31

eir
s of

the

ity
e-
public final java.lang.String method

public final java.lang.String realfile

public final java.lang.String virtfile

public final java.lang.String raw

public final java.lang.String query

public final java.lang.String notQuery

public final java.lang.String remoteaddr

public final long time

public final RoxenConfiguration configuration()

public java.util.Map variables()

public java.util.Map requestHeaders()

public java.util.Map cookies()

public java.util.Set supports()

public java.util.Set pragma()

public java.util.Set prestate()

public void cache(int sec)

public void noCache()

End of /roxen/2.1/programmer/java/RoxenRequest.html

RoxenResponse

Start of /roxen/2.1/programmer/java/RoxenResponse.html

java.lang.Object
|

+-- com.roxen.roxen.RoxenResponse

The base class for response objects. Use the methods in the
HTTP class to create response objects.

public void addHTTPHeader(java.lang.String name,

java.lang.String value)

End of /roxen/2.1/programmer/java/RoxenResponse.html

RoxenRXMLResponse

Start of /roxen/2.1/programmer/java/RoxenRXMLRe-
sponse.html

java.lang.Object
|
+--com.roxen.roxen.RoxenResponse

|
+--com.roxen.roxen.RoxenStringResponse

|

+-- com.roxen.roxen.RoxenRXMLRe-
sponse

A class of responses using an RXML parsed string as th
source. Use the methods in the HTTP class to create object
this class.

End of /roxen/2.1/programmer/java/RoxenRXMLRe-
sponse.html

RoxenStringResponse

Start of /roxen/2.1/programmer/java/RoxenStringRe-
sponse.html

java.lang.Object
|
+--com.roxen.roxen.RoxenResponse

|

+-- com.roxen.roxen.RoxenStringResponse

A class of responses using a string as their source. Use
methods in the HTTP class to create objects of this class.

End of /roxen/2.1/programmer/java/RoxenStringRe-
sponse.html

SecurityModule

Start of /roxen/2.1/programmer/java/SecurityModule.html

The interface for modules that should be marked as secur
modules in the module listing. It contains no methods, impl
menting it just flags the module as security related.

End of /roxen/2.1/programmer/java/SecurityModule.html
32

SimpleTagCaller

Start of /roxen/2.1/programmer/java/SimpleTagCaller.html

 The interface for handling a single specific RXML tag

public static final int FLAG_NONE

public static final int FLAG_EMPTY_ELEMENT

public static final int FLAG_NO_PREFIX

public static final int FLAG_PROC_INSTR

public static final int FLAG_DONT_PREPARSE

public static final int FLAG_POSTPARSE

public static final int FLAG_STREAM_RESULT

public static final int FLAG_STREAM_CONTENT

Note: It might be obvious, but using streaming is significantly
less effective than nonstreaming, so it should only be done
when big delays are expected.

public static final int FLAG_STREAM

public static final int FLAG_DEBUG

public java.lang.String queryTagName()

public int queryTagFlags()

public java.lang.String tagCalled(java.lang.String t

ag,
java.util.Map arg

s,
java.lang.String

contents,
RoxenRequest id,
Frame frame)

End of /roxen/2.1/programmer/java/SimpleTagCaller.html

UniqueModule

Start of /roxen/2.1/programmer/java/UniqueModule.html

The interface for modules that may only have one copy in any
given virtual server. It contains no methods, implementing it
just prevents multiple copies of the module from being added to
a virtual server.

End of /roxen/2.1/programmer/java/UniqueModule.html
33

34

y
er,

e
ed
Perl

The perl support, provided by the module of that same name,
offers two ways of using perl with Roxen: running perl scripts
and running in-line perl code. The script support caches scripts
so they (and the perl interpreter) don't need to be reloaded every
time the script runs. The in-line Perl code support allows run-
ning snippets of perl code inside<perl>...</perl> containers
in RXML pages or within<?perl ... ?> processing instruc-
tions.

End of /roxen/2.1/programmer/perl/index.xml

Using In-Line Perl Code

Start of /roxen/2.1/programmer/perl/tag.xml

How to use the<?perl ... ?> processing instruction in your
RXML pages.

In-line perl code in<?perl ... ?> processing instructions can be
executed much like scripts, and the same subset of the Apache
API is available as in the perl script support described in the
API section.

Note that the default value for the "Perl Tag Support" config-
uration option is "No", and that this has to be changed to "Yes"
for in-line Perl code to be executed. Also note that the "RXML-
parse tag results" option has to be switched to "Yes" if you want
the output produced by the Perl code to be RXML parsed after-
wards.

An example perl PI tag:

<?perl
Roxen->request()->print(scalar localtime);
?>

End of /roxen/2.1/programmer/perl/tag.xml

Running Perl Scripts

Start of /roxen/2.1/programmer/perl/script.xml

With the "Script output" option of the perl support module set to
HTTP, it is possible to run old perl CGI scripts more or less as
they are, only with better performance, provided they don't rely
on their environment being reset upon each run of the script.
(This performance boost comes in part from the script already
being loaded and compiled, thus staying resident in-between
requests and in part from the fact that there is no need to fork
off new processes for the script.)

The environment variables are the same as those available in
standard CGI, plus those added by roxen for your convenience.

As with CGI, anything you print to STDERR ends up in the
server's general debug log file (or the console, in the event of
your starting the server with the--once flag).

CGI-Style Scripts

A simple example of a traditional CGI script in perl could look
like:

#! /usr/local/bin/perl
print "Content-type: text/plain\r\n\r\n";
print "Environment variables:\n";
for (sort keys %ENV)
{

print $_, "=", $ENV{$_}, "\n";
}

mod_perl-style Scripts

Turning this one into a mod_perl-style script, also runnable b
the Perl support module and by some considered a bit tidi
might result in something along the lines of:

my $r = Roxen->request();
$r->print("Content-type: text/plain\r\n\r\n");
$r->print("Environment variables:\n");
for (sort keys %ENV)
{

$r->print($_, "=", $ENV{$_}, "\n");
}

End of /roxen/2.1/programmer/perl/script.xml

Supported mod_perl API Methods

Start of /roxen/2.1/programmer/perl/api.xml

The Perl support for Roxen 2.1 has limited support for th
Apache mod_perl interface. A request object can be obtain
with

$r = Roxen->request();

or, for compatibility,

$r = Apache->request();

The request object functions currently supported include:

$r->print (@list)
$r->printf($formatstring, @list)
$r->status([$status])
$r->status_line([$status])
$r->method()
$r->uri()
$r->filename()
$r->protocol()
$r->log_error($message)
$r->warn($message)
$r->get_basic_auth_pw()
$r->get_remote_host()
$c = $r->connection()

The connection object supports the following functions:

$c->auth_type()
$c->user()
$c->remote_ip()
$c->remote_host()

Additionally, two auxiliary functions are available:

Roxen->unescape_url($url)
Roxen->unescape_url_info($url)

For compatibility, they are also available as
35

Apache->unescape_url($url)
Apache->unescape_url_info($url)

The standard Perl functions "print" and "exit" have been over-
loaded so that they should reasonably safe to use, but their use
is deprecated. Use $r->print() and $r->exit() instead.

End of /roxen/2.1/programmer/perl/api.xml
36

ell

i-
be
to
se
re

ns

a

t

ot

r

e

e

e

're

e

p-
CGI

CGI - the freedom and possibly the shackles of free choice, and
how CGI scripts can be put to use in the overall roxen picture.

CGI, the Common Gateway Interface (for an in-depth, external,
non-roxen-specific reference, see a more official definition of
the CGI specifications at http://hoohoo.ncsa.uiuc.edu/cgi/), is
the age-old standard for making and running portable scripts on
practically any web server. Roxen supports CGI via the CGI
module.

The two good thing about CGI programming is that it works
with any web server and that it allows the programmer full free-
dom of choice regarding the programming language. Unfortu-
nately these are also the only benefits of CGI. For each request
to a CGI script a program has to be run, something rather costly
performancewise. CGI is not particularly easy to program;
many complexities of web application programming must be
handled by the CGI programmer. Nor are the security issues
handled for you - it is entirely up to the programmer to take care
about those issues herself.

Many of these shortcomings are however handled by lan-
guages and programming environments that use CGI to access
the web server. With a good library, CGI programming can
become easy for the programmer. It is however recommended
to check how the library, language or environment handles the
security implications of web application programming, and
what the programmer needs to worry about.

Roxen makes it possible to integrate CGI programming with
RXML. It is possible to embed calls to CGI scripts within
RXML pages by using the<cgi/> or <insert/> tags. It is also
possible for the RXML parser to post process output from CGI
scripts. That way, a CGI script can make use of functionality
from roxen modules.

The<cgi/> tag can be used together with the<define> tag
to create new RXML tags that are handled via CGI scripts.

End of /roxen/2.1/programmer/cgi/index.xml

What is a CGI Script?

Start of /roxen/2.1/programmer/cgi/concept.xml

A CGI script is a program or script that is executed once for
each request for it. The CGI script is either identified by file
extension, for example.cgi , or by residing in a certain direc-
tory, for example/cgi-bin/ . A request to a CGI script will be
handled by finding the script and starting it with information
about the request sent as environment variables and data on
stdin. The script returns data by writing it to stdout.

The CGI script needs to be an executable file on the operat-
ing system. On Unix this is either a program, or a script that
begins with#! followed by the name of the interpreter. On Win-
dows this is either a program or a file with an extension bound
to the suitable interpreter.

End of /roxen/2.1/programmer/cgi/concept.xml

Available Environment Variables

Start of /roxen/2.1/programmer/cgi/environment.xml

The use of environment variables for argument passing, as w
as the handy roxen extensions to the standard.

A CGI script receives all of its parameters via environment var
ables. Since most of the variables received this way could
altered by a malicious cracker, it is a sound practice never
trust the content of these variables blindly and be sure to u
proper quoting at all times. This reminder being said, here a
the variables sent and their contents:
• When the browser authenticates itself, this variable contai

the authentication type in use. The most common value is
Basic .

• If any RoxenConfig configuration options were set, this is
space-separated array of them all.

• For requests which have attached information, such as
HTTP POST and PUT, this is the length of the said conten
given by the client (available to read from stdin). This value
may safely be trusted, since it is computed by roxen (and n
fetched from the HTTP headers).

• This is the content type of the data provided; see
CONTENT_LENGTH.

• A space-separated list of all cookie names sent with this
request.

• The value of the cookiename.
• The filename of the CGI script.
• The path part of the URL to the CGI script.
• The version of the CGI protocol used, which is CGI/1.1 fo

Roxen 2.1.
• The contents of the HTTP Accept header of the request.
• The contents of the HTTP Accept-Charset header of the

request.
• The contents of the HTTP Accept-Encoding header of th

request.
• The contents of the HTTP Accept-Language header of th

request.
• The contents of the HTTP Authorization header of the

request. It will only be available if theRaw user info vari-
able has been set toYes by the server administrator.

• The net_loc part of the URL, as sent in the HTTP Host
header, for instancelocalhost:4711 .

• The contents of the HTTP Proxy-Connection header of th
request.

• If the client sent any pragma header(s), they are provided
here. For practical purposes, the only pragma header you
likely to encounter isno-cache , which some browsers
(Netscape comes to mind) send when the user reloads th
page.

• A lowercased version of the HTTP Connection header; ty
ically keep-alive .

• The HTTP Referer header, if one was sent.
• The full name of the browser used.
• The query part of the URL, if present.
• The last modification date, HTTP formatted.
37

hed
pt
or-
-
on

e
the
er
cli-

d
er
ur
on

n

• If your server has thePath Info Support module loaded
and the script was fed path info parameters, it is provided in
this variable. The path info is the rest of the path segment in
the URL following the pathname of your script.

• When thePATH_INFO variable is present, so is
PATH_TRANSLATED. It contains a full filesystem path to the
file that would be accessed when combining the directory
name of the CGI script itself and the PATH_INFO variable.

• If roxen found prestates in the URL, this is a space-sepa-
rated array of those present.

• The valuetrue if that prestate was present.
• The query part of the URL, if present.
• The value of the form variablename.
• The IP number of the client machine.
• The domain name of the client machine, if roxen has had

time to find it. Since it takes some time to find what domain
name a computer has this information will not be available
the first time a certain computer connects to the server.

• The port number used by the client.
• The login name used by the user.
• The password used by the user, only available if theSend

decoded password variable is set toYes by the administra-
tor and the client authenticated itself.

• The method given in the HTTP request. In most cases, this
will probably be GET or POST, but other HTTP methods,
like PUT, are also possible. When using special protocols,
such as WebDAV, other request methods may also occur.

• If the client authenticated itself ok with roxen's authentica-
tion module, this variable will contain the value1.

• If your server is setup to give all users user id cookies, this
is the number of the user which requested the script right
now.

• The complete path in the real file system to the CGI script.
• The path part in the URL.
• The domain name of the web server.
• The port number of the web servers. The default is 80 for

HTTP or 443 for HTTPS, but it can be almost any value. If
the server has several ports this variable will contain the port
used to access the script.

• The protocol used.
• The name and version information of the web server.
• The URL to the web server. Together with

SCRIPT_NAME, this makes up the complete URL for the
script.

• A list of words, separated with spaces, of all features for
which support information is available. See the supports
chapter in the Website Creator manual for more information.

• The valuetrue if that feature is supported by the current
browser. See the supports chapter in the Website Creator
manual for more information.

• A list of all form variables.
• The value of the form variablename.
• The valuetrue if that RoxenConfig configuration option

was set. See alsoCONFIGS.

End of /roxen/2.1/programmer/cgi/environment.xml

I/O Via the Standard Streams

Start of /roxen/2.1/programmer/cgi/streams.xml

The workings of the script's standard streams; stdin, stdout and
stderr.

Stdin - Standard Input

Request methods such as HTTP POST and PUT have attac
information in the request body that, unlike the common scri
parameters, is not present as environment variables. This inf
mation, CONTENT_LENGTH bytes in total, is instead avail
able for reading from stdin. See also the previous page
environment variables.

Stdout - Standard Output

It is up to your script to write out whatever HTTP respons
headers it needs to stdout. After the headers (possibly none),
script must produce two newlines, and whatever is written aft
that ends up in the request body as the webpage seen by the
ent.

Stderr - Standard Error

Basically, your CGI script talks to the world through stdout an
to the logs via stderr. By default, stderr is sent to the main serv
log, but this may be altered by the server administrator. Yo
debug and/or logging messages should typically end up
stderr. When your roxen process was started with the--once

flag, all stderr output ends up in the console from which roxe
was started.

An example script in/bin/sh exemplifying all of the above
might look like this:

#!/bin/sh

if [-z "$CONTENT_LENGTH"]; then

cat << end_form
Content-type: text/html

<form method=post>
<input type=text name=variable size=40

value="Press submit to see a POST request body.">
<input type=submit>

</form>
end_form

else

cat << end_reply
Content-type: text/plain

$CONTENT_LENGTH bytes of data were sent to us.
The content-type was $CONTENT_TYPE:

end_reply
cat

fi

echo "CGI example ran at `date`." 1>&2

End of /roxen/2.1/programmer/cgi/streams.xml
38

	Table of Contents
	Introduction 3
	Terminology 3
	The Inner Workings of Roxen 3

	A Request's Path Through Roxen 5
	Encountered Module Types 5

	Important Concepts 7
	The Memory Cache 7

	Important Classes 9
	RequestID 9
	Configuration 10
	Variable.Variable 11
	Available Variable Types 13

	The Roxen Module API 15
	Introduction to Roxen Modules 15
	The Module Type Calling Sequence 15
	Constants Common to All Modules 16
	Callback Methods Common to All Modules 16
	API Methods Common to All Modules 17
	Module Variables 17
	Tag Modules 18
	Location (Filesystem) Modules 19
	File Extension Modules 20
	Filter Modules 20
	Authentication Modules 20
	Logger Modules 20
	First Modules 21
	Last Modules 21
	Provider Modules 21
	Content Type Modules 21
	Directory Listing Modules 21

	Roxen-specific Pike Modules 23
	Roxen 23

	Pike 25
	Script 25
	Processing Instruction 25

	Java 27
	AbstractLocationModule 27
	ExperimentalModule 27
	FileExtensionModule 27
	Frame 27
	HTTP 27
	LastResortModule 28
	LocationModule 28
	Module 29
	ParserModule 30
	ProviderModule 30
	RoxenClassLoader 30
	RoxenConfiguration 30
	RoxenFileResponse 31
	RoxenLib 31
	RoxenRequest 31
	RoxenResponse 32
	RoxenRXMLResponse 32
	RoxenStringResponse 32
	SecurityModule 32
	SimpleTagCaller 33
	UniqueModule 33

	Perl 35
	Using In-Line Perl Code 35
	Running Perl Scripts 35
	Supported mod_perl API Methods 35

	CGI 37
	What is a CGI Script? 37
	Available Environment Variables 37
	I/O Via the Standard Streams 38

	Introduction
	Terminology
	The Inner Workings of Roxen

	A Request's Path Through Roxen
	Encountered Module Types
	Calling Sequence
	1. An incoming request enters roxen through the protocol module, which handles the lower level co...
	2. If the protocol module got some form of authentication information from the client, the authen...
	3. The first try modules get the first shot at returning a response of some sort to the client. F...
	4. The request now enters a location module; which one depends on the path accessed. In this resp...
	5. The request was found a directory at some earlier level, and it is now up to the directory lis...
	6. If some previous level sent handled a request by sending forth a file down the chain, it is pr...
	7. The content-type module tags the resulting page with a suitable content-type for the file bein...
	8. All requests then pass through the filter module stage. Filter modules may process and alter t...
	9. If no module has yet handled the request, the last modules get a shot at catching and processi...
	10. The protocol module which originally set this chain going is returned the result from previou...
	11. Finally, as the result is being transferred back to the client, the logger modules get their ...

	Important Concepts
	The Memory Cache

	Important Classes
	RequestID
	Note! There are actually different request information objects for different protocols. To the pr...
	Protocol port_obj;
	int time;
	string raw_url;
	int do_not_disconnect;
	mapping(string:string) variables;
	mapping(string:mixed) misc;
	mapping(string:string) cookies;
	mapping(string:string) request_headers;
	mapping(string:mixed) client_var;
	multiset(string) prestate;
	multiset(string) config;
	multiset(string) supports;
	multiset(string) pragma;
	string prot;
	string clientprot;
	string method;
	string realfile;
	string virtfile;
	string rest_query;
	string raw;
	string query;
	string not_query;
	string data;
	string remoteaddr;
	string host;
	Stdio.File connection()
	Configuration configuration()
	Configuration
	Server Info
	int requests;
	int sent;
	int hsent;
	int received;
	mapping(string:RoxenModule) modules;
	mapping(RoxenModule:string) otomod;
	int save_one(RoxenModule o)
	void save(int|void all)
	int(0..1) is_file(string virt_path, RequestID id)
	int|string try_get_file(string s, RequestID id, int|void status, int|void nocache, int|void not_i...
	string real_file(string file, RequestID id)
	mapping get_file(RequestID id, int|void no_magic, int|void internal_get)
	mapping|int(-1..0) low_get_file(RequestID id, int|void no_magic)

	Inter-module Communication
	array(string) userinfo(string u, RequestID|void id)
	array(string) userlist(RequestID|void id)
	array(string) user_from_uid(int u, RequestID|void id)
	mixed call_provider(string provides, string fun, mixed ... args)
	array(mixed) map_providers(string provides, string fun, mixed ... args)
	array(RoxenModule) get_providers(string provides)
	RoxenModule get_provider(string provides)
	RoxenModule|string find_module(string name)

	Variable.Variable
	void create(mixed default, void|int flags, void|string|object std_name, void|string|object std_doc)
	VAR_INITIAL
	VAR_MORE
	VAR_DEVELOPER
	VAR_EXPERT

	void set_invisibility_check_callback(function(RequestID,Variable:int) cb)
	function(RequestID,Variable:int) get_invisibility_check_callback()
	int check_visibility(RequestID id, int more_mode, int expert_mode, int devel_mode, int initial, i...
	void set_flags(int flags)
	int get_flags()
	void set_warning(string to)
	void add_warning(string to)
	int set(mixed to)
	true (non-zero)
	false (zero)

	int low_set(mixed to)
	-1
	1
	0

	mixed query()
	int is_defaulted()
	string get_warnings()
	function(Variable:void) get_changed_callback()
	void set_changed_callback(function(Variable:void) cb)
	void add_changed_callback(function(Variable:void) cb)
	mixed default_value()
	string type
	string doc()
	string name()
	string type_hint()
	array(string|mixed) verify_set_from_form(mixed new_value)
	array(string|mixed) verify_set(mixed new_value)
	mapping(string:string) get_form_vars(RequestID id)
	mixed transform_from_form(string what)
	void set_from_form(RequestID id)
	string path()
	void set_path(string to)
	string render_form(RequestID id, void|mapping additional_args)
	string render_view(RequestID id)

	Available Variable Types
	Variable.Flag
	Variable.Int
	void set_range(int minimum, int maximum)

	Variable.Float
	void set_range(float minimum, float maximum)
	void set_precision(int prec)

	Variable.String
	constant width = 40;

	Variable.Password
	Variable.File
	string read()
	Stat stat()

	Variable.Location
	Variable.URL
	Variable.Directory
	Stat stat()
	array get()

	Variable.Text
	constant cols = 60;
	constant rows = 10;

	Variable.MultipleChoice
	void set_choice_list(array to)
	array get_choice_list()
	void set_translation_table(mapping to)
	mapping get_translation_table()
	static string _name(mixed what)
	static string _title(mixed what)

	Variable.StringChoice
	Variable.IntChoice
	Variable.FloatChoice
	void set_precision(int prec)

	Variable.FontChoice
	Variable.List
	string transform_to_form(mixed what)

	Variable.DirectoryList
	Variable.StringList
	Variable.IntList
	Variable.FloatList
	void set_precision(int prec)

	Variable.URLList
	Variable.PortList
	Variable.FileList

	The Roxen Module API
	Introduction to Roxen Modules
	The Module Type Calling Sequence
	1. First off, the request in intercepted on the socket by a protocol module. The protocol module ...
	2. Before leaving the protocol module, sending the request forth to the various module types, the...
	3. Next stop in the chain is the authentication module, when present. The authentication module h...
	4. The next class of modules that see the request are the First modules. If a first try module wo...
	5. Still unhandled requests now undergo a check for what path was accessed, and is then routed to...
	6. The request was considered a directory, and it is up to the directory listing module to genera...
	7. Stdio.File objects generated by previous levels are sent to the file extension modules accordi...
	8. The content-type module, although mostly orthogonal to the request path calling chain, possibl...
	9. All requests then pass through the filter module stage for possible processing of the returned...
	10. If the entire module type calling sequence passed so far has failed to return a response, the...
	11. The protocol module which originally set this chain going is returned the result from previou...
	12. Once the protocol module has initiated the response transfer to the client, the logger module...

	Constants Common to All Modules
	string cvs_version;
	string module_name;
	int module_type;
	string module_doc;
	int module_unique;
	int thread_safe;

	Callback Methods Common to All Modules
	void create(Configuration|void conf)
	string info(Configuration|void conf)
	void start(int occasion, Configuration conf)
	void stop()
	string status()
	mapping|int(-1..0)|Stdio.File find_internal(string file, RequestID id)

	API Methods Common to All Modules
	int module_dependencies(Configuration conf, array(string) modids)
	mapping(string:function(RequestID:void)) query_action_buttons(RequestID id)
	string query_internal_location()
	string query_absolute_internal_location(RequestID id)
	void set_module_creator(string|array(string) c)
	void set_module_url(string to)

	Module Variables
	Variable.Variable defvar(string name, Variable.Variable var)
	Variable.Variable defvar(string var, mixed value, string name, int type, string doc, array|void m...
	string var
	mixed value
	string name
	int type
	string doc
	array|void misc
	int|function|void hide_if_true

	mixed query(string var, int|void ok)
	QUERY(var)
	int killvar(string var)
	void set(string var, mixed value)
	Variable.Variable getvar(string name)

	Tag Modules
	RXML Tag Flags
	Class-based Tag API

	Location (Filesystem) Modules
	File Extension Modules
	Filter Modules
	Authentication Modules
	1. an int(0..1) signifying authentication failure (0) or success (1)
	2. a string with the username (authenticated or not)
	3. when failed, a string with the password used for the failed authentication attempt, otherwise ...

	Logger Modules
	First Modules
	Last Modules
	Provider Modules
	Content Type Modules
	Directory Listing Modules

	Roxen-specific Pike Modules
	Roxen
	Response Methods
	mapping http_string_answer(string text, string|void type)
	mapping http_file_answer(Stdio.File text, string|void type, int|void len)
	mapping http_rxml_answer(string rxml, RequestID id, void|Stdio.File file, void|string type)
	mapping http_low_answer(int errno, string data)
	mapping http_pipe_in_progress()
	mapping http_try_again(float delay)
	mapping http_redirect(string url, RequestID|void id)
	mapping http_stream(Stdio.File from)
	mapping http_auth_required(string realm, string|void message)
	mapping http_proxy_auth_required(string realm, void|string message)

	Utility Functions
	void set_cookie(RequestID id, string name, string value, int|void expire_time_delta, string|void ...
	string http_date(int t)
	string http_encode_string(string f)
	string http_encode_cookie(string f)
	string http_encode_url(string f)
	void remove_cookie(RequestID id, string name, string value, string|void domain, string|void path)

	Pike
	Script
	API Methods

	Processing Instruction
	Methods
	Special Variables

	Java
	AbstractLocationModule
	ExperimentalModule
	FileExtensionModule
	Frame
	HTTP
	LastResortModule
	LocationModule
	Module
	ParserModule
	ProviderModule
	RoxenClassLoader
	RoxenConfiguration
	RoxenFileResponse
	RoxenLib
	RoxenRequest
	RoxenResponse
	RoxenRXMLResponse
	RoxenStringResponse
	SecurityModule
	SimpleTagCaller
	UniqueModule

	Perl
	Using In-Line Perl Code
	Running Perl Scripts
	CGI-Style Scripts
	mod_perl-style Scripts

	Supported mod_perl API Methods

	CGI
	What is a CGI Script?
	Available Environment Variables
	I/O Via the Standard Streams
	Stdin - Standard Input
	Stdout - Standard Output
	Stderr - Standard Error

